はじめに
手持ちの単変量の分布を確率密度関数に当てはめて母数を推定する(よくわからない)
使うデータは他のページで作成したdf.testDATA
スクリプト
library(fitdistrplus) # 分布のテスト x <- df.testDATA$Time2Onset y <- max(df.testDATA$Time2Onset) min(df.testDATA$Time2Onset) ################ distribution test ################ normmlefit <- fitdist(x, "norm", "mle"); fit <- normmlefit; gofstat(fit); plot(fit) lnormmlefit <- fitdist(x + 0.1, "lnorm", "mle"); fit <- lnormmlefit; gofstat(fit); plot(fit) poismlefit <- fitdist(x, "pois", "mle"); fit <- poismlefit; gofstat(fit); plot(fit) expmlefit <- fitdist(x, "exp", "mle"); fit <- expmlefit; gofstat(fit); plot(fit) gammammefit <- fitdist(x, "gamma", "mme"); fit <- gammamlefit; gofstat(fit); plot(fit) nbinommlefit <- fitdist(x, "nbinom", "mle"); fit <- nbinommlefit; gofstat(fit); plot(fit) geommlefit <- fitdist(x, "geom", "mle"); fit <- geommlefit; gofstat(fit); plot(fit) betammefit <- fitdist(x/y, "beta", "mme"); fit <- betamlefit; gofstat(fit); plot(fit) unifmlefit <- fitdist(x, "unif", "mle"); fit <- unifmlefit; gofstat(fit); plot(fit) logismlefit <- fitdist(x, "logis", "mle"); fit <- logismlefit; gofstat(fit); plot(fit)
結果
よくフィットしてそうなのはbetaかgammaの様です
ロジスティック分布
Fitting of the distribution ' logis ' by maximum likelihood Parameters : estimate Std. Error location 58.31789 2.418478 scale 45.17608 1.249104 Loglikelihood: -5863.559 AIC: 11731.12 BIC: 11740.93 Correlation matrix: location scale location 1.0000000 0.1570439 scale 0.1570439 1.0000000
一様の分布(定数)
Fitting of the distribution ' unif ' by maximum likelihood Parameters : estimate Std. Error min 0 NA max 682 NA Loglikelihood: -6525.03 AIC: 13054.06 BIC: 13063.87 Correlation matrix: [1] NA
beta分布
Fitting of the distribution ' beta ' by matching moments Parameters : estimate shape1 0.4604008 shape2 3.6574364 Loglikelihood: NaN AIC: NaN BIC: NaN
geom分布
Fitting of the distribution ' geom ' by maximum likelihood Parameters : estimate Std. Error prob 0.01294465 0.0004042749 Loglikelihood: -5340.572 AIC: 10683.14 BIC: 10688.05
負の二項分布
Fitting of the distribution ' nbinom ' by maximum likelihood Parameters : estimate Std. Error size 0.7293184 0.02936535 mu 76.2394754 2.83607459 Loglikelihood: -5307.489 AIC: 10618.98 BIC: 10628.79 Correlation matrix: size mu size 1.0000000000 0.0001760878 mu 0.0001760878 1.0000000000
gamma分布
Fitting of the distribution ' gamma ' by matching moments Parameters : estimate shape 0.644237078 rate 0.008448789 Loglikelihood: Inf AIC: -Inf BIC: -Inf
指数分布
Fitting of the distribution ' exp ' by maximum likelihood Parameters : estimate Std. Error rate 0.01311441 0.0004122862 Loglikelihood: -5334.044 AIC: 10670.09 BIC: 10675
ポワソン分布
Fitting of the distribution ' pois ' by maximum likelihood Parameters : estimate Std. Error lambda 76.252 0.2761377 Loglikelihood: -48448.44 AIC: 96898.87 BIC: 96903.78
対数正規分布
Fitting of the distribution ' lnorm ' by maximum likelihood Parameters : estimate Std. Error meanlog 3.477753 0.05160282 sdlog 1.631824 0.03648864 Loglikelihood: -5386.39 AIC: 10776.78 BIC: 10786.6 Correlation matrix: meanlog sdlog meanlog 1 0 sdlog 0 1
正規分布
Fitting of the distribution ' norm ' by maximum likelihood Parameters : estimate Std. Error mean 76.25200 3.004195 sd 95.00104 2.124288 Loglikelihood: -5972.826 AIC: 11949.65 BIC: 11959.47 Correlation matrix: mean sd mean 1 0 sd 0 1