R epibasixを触ってみた

epibasixパッケージの関数を試して見ました

sensSpec関数

このRコードは、疫学研究において新しい検査法や自己報告を現行のゴールドスタンダードと比較する際に、感度、特異度、Youden指数、および一致率を計算するためのものです。

library(epibasix)

# This function is designed to calculate Sensitivity, Specificity, Youden’s J and Percent Agreement.
# These tools are used to assess the validity of a new instrument or self-report against the current
# gold standard. In general, self-report is less expensive, but may be subject to information bias.
# Computational formulae can be found in the reference.

dat <- cbind(c(18,1), c(19,11))
summary(sensSpec(dat))

# Szklo M and Nieto FJ. Epidemiology: Beyond the Basics, Jones and Bartlett: Boston, 2007 P.315
  • 感度 (Sensitivity): 検査法が疾患を正しく検出する能力を評価します。感度は、疾患の存在する人々のうち、検査で陽性と判定された割合を示します。
  • 特異度 (Specificity): 検査法が健康な人々を正しく陰性と判定する能力を評価します。特異度は、健康な人々のうち、検査で陰性と判定された割合を示します。
  • Youden指数 (J): Youden指数は、感度と特異度のバランスを示す指標です。Youden指数は、感度と特異度の和から1を引いた値で計算されます。Youden指数が高いほど、検査法の性能が良いことを意味します。
  • 一致率 (Percent Agreement): 現行のゴールドスタンダードと新しい検査法の結果が一致する割合を示します。一致率は、両者の結果が同じと判定された割合です。

このコードでは、epibasixパッケージを使用して、与えられたデータセットから感度、特異度、Youden指数、および一致率を計算しています。具体的な計算式は、参考文献で確認できます1

このような指標を使用することで、新しい検査法の有効性を評価し、疫学研究において適切な判断を行うことができます。

sensSpec関数の実行結果

> summary(sensSpec(dat))

 Detailed Sensitivity and Specitivity Output 
 
Input Matrix: 
           Gold Standard A Gold Standard B
Reported A              18              19
Reported B               1              11

The sample sensitivity is: 94.7% 
95% Confidence Limits for true sensitivity are: [84.7, 104.8]

The sample of specificity is: 36.7% 
95% Confidence Limits for true specificity are: [19.4, 53.9]

The sample value of Youden's J is: 31.4
95% Confidence Limits for Youden's J are: [11.4, 51.4]

Sample value for Percent Agreement (PA) is: 59.2% 
95% Confidence Limits for PA are: [45.4, 72.9]

ま、そういう事みたいです。

univar関数

このRコードは、単一の変数に対する詳細な単変量解析を提供します。具体的には、以下の統計量を計算します:

  • 平均 (mean): 観測値の平均値。
  • 中央値 (median): 観測値の中央値。
  • 標準偏差 (standard deviation): 観測値のばらつきの尺度。
  • 範囲 (range): 観測値の最小値から最大値までの幅。
  • 仮説検定と信頼区間のツール

具体的な使用方法は次の通りです:

#This function provides detailed univariate analysis for a single variable. Values include the sample
# mean, median, standard deviation and range, as well as tools for hypothesis tests and confidence
# intervals.

x <- rexp(100)
univar(x)

# Casella G and Berger RL. Statistical Inference (2nd Ed.) Duxbury: New York, 2002.

univar関数の実行結果

> x <- rexp(100)
> univar(x)

Univariate Summary
 
Sample Size: 100
Sample Mean: 0.972 
Sample Median: 0.632 
Sample Standard Deviation: 0.986 

ま、このパッケージは他のものでカバーできそうかな

 

コメントする

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

このサイトはスパムを低減するために Akismet を使っています。コメントデータの処理方法の詳細はこちらをご覧ください

Translate »