Japanese / English

Home > Publications

Publications

(*equal contribution)

2021-

  1. Obara K., Ebina T., Terada S., Uka T., Komatsu Y., Takaji M., Watakabe A., Kobayashi K., Masamizu Y., Mizukami H., Yamamori T., Kasai K., and Matsuzaki M.
    Change detection in the primate auditory cortex through feedback of predictive error signals.
    Nature Communications 14, 6981, 2023.
  2. *Hoang H., *Tsutsumi S., Matsuzaki M., Kano M., Kawato M., Kitamura K., and Toyama K.
    Dynamic organization of cerebellar climbing fiber response and synchrony in multiple functional components reduces dimensions for reinforcement learning.
    eLife 12, e86340, 2023.
  3. *Shinotsuka T., *Tanaka Y.R., *Terada S., Hatano N., and Matsuzaki M.
    Layer 5 intratelencephalic neurons in the motor cortex stably encode skilled movement.
    Journal of Neuroscience 43, 7130-7148 2023.
  4. Terada S., Kobayashi K., and Matsuzaki M.
    Transition of distinct context-dependent ensembles from secondary to primary motor cortex in skilled motor performance.
    Cell Reports 41, 111494, 2022.
  5. Terada S. and Matsuzaki M.
    Silent microscopy to explore a brain that hears butterflies' wings.
    Light: Science & Applications 11, 140, 2022. (News & Views)
  6. Matsuzaki M. and Ebina T.
    Optical deep-cortex exploration in behaving rhesus macaques.
    Nature Communications 12, 4656, 2021.
  7. Inoue T., Terada S., Matsuzaki M., and Izawa J.
    A small-scale robotic manipulandum for motor control study with rodents.
    Advanced Robotics 35, 898-906, 2021.
  8. Kondo M., and Matsuzaki M.
    Neuronal representations of reward-predicting cues and outcome history with movement in the frontal cortex.
    Cell Reports 34, 108704, 2021.
  9. Okamoto K., Ebina T., Fuji N., Konishi K., Sato Y., Kashima T., Nakano R., Hioki H., Takeuchi H., Yumoto J., Matsuzaki M., and Ikegaya Y.
    Tb3+-doped fluorescent glass pipettes for biology.
    Science Advances 7, eabd2529, 2021.

2018-2020

  1. *Tanimoto S., *Kondo M., Morita K., Yoshida E., and Matsuzaki M.
    Non-action learning: Saving action-associated cost serves as a covert reward.
    Frontiers in Behavioral Neuroscience 14, 141, 2020.
  2. Hasegawa R., Ebina T., Tanaka Y.R., Kobayashi K., and Matsuzaki M.
    Structural dynamics and stability of corticocortical and thalamocortical axon terminals during motor learning.
    PLoS One 15, e0234930, 2020.
  3. Matsuzaki M. and Ebina T.
    Common marmoset as a model primate for study of the motor control system.
    Current Opinion in Neurobiology 64, 103-110, 2020.
  4. Kato D., Wake H., Lee P.R., Tachibana Y., Ono R., Sugio S., Tsuji Y., Tanaka Y.H., Tanaka Y.R., Masamizu Y., Hira R., Moorehouse A.J., Tamamaki N., Ikenaka K., Matsukawa N., Fields R.D., Nabekura J., and Matsuzaki M.
    Motor learning requires myelination to reduce asynchrony and spontaneity in neural activity.
    Glia 68, 193-210, 2020.
  5. Ebina T., Obara K., Watakabe A., Masamizu Y., Terada S., Matoba R., Takaji M., Hatanaka N., Nambu A., Mizukami H., Yamamori T., and Matsuzaki M.
    Arm movements induced by noninvasive optogenetic stimulation of the motor cortex in the common marmoset.
    Proceedings of the National Academy of Sciences of the United States of America 116, 22844-22850, 2019.
  6. Tsutsumi S., Hidaka N., Isomura Y., Matsuzaki M., Sakimura K., Kano M., and Kitamura K.
    Modular organization of cerebellar climbing fiber inputs during goal-directed behavior.
    eLife 8, e47021, 2019.
  7. Terada S., Kobayashi K., Ohkura M., Nakai J., and Matsuzaki M.
    Super-wide-field two-photon imaging with a micro-optical device moving in post-objective space.
    Nature Communications 9, 3550, 2018.
  8. *Tanaka Y.H., *Tanaka Y.R., Kondo M., Terada S., Kawaguchi Y., and Matsuzaki M.
    Thalamocortical axonal activity in motor cortex exhibits layer-specific dynamics during motor learning.
    Neuron 100, 244-258, 2018.
  9. *Yoshida E., *Terada S., Tanaka Y.H., Kobayashi K., Ohkura M., Nakai J., and Matsuzaki M.
    Wide-field calcium imaging of mouse thalamocortical synapses with an 8 K ultra-high-definition camera.
    Scientific Reports 8, 8324, 2018.
  10. *Ebina, T., *Masamizu Y., Tanaka Y.R., Watakabe A., Hirakawa R., Hirayama Y., Hira R., Terada S., Koketsu D., Hikosaka K., Mizukami H., Nambu A., Sasaki E., Yamamori T., and Matsuzaki M.
    Two-photon imaging of neuronal activity in motor cortex of marmosets during upper-limb movement tasks.
    Nature Communications 9, 1879, 2018.
  11. Endo K., Ishigaki S., Masamizu Y., Fujioka Y., Watakabe A., Yamamori T., Hatanaka N., Nambu A., Okado H., Katsuno M., Watanabe H., Matsuzaki M., and Sobue G.
    Silencing of FUS in the common marmoset (Callithrix jacchus) brain via stereotaxic injection of an adeno-associated virus encoding shRNA.
    Neuroscience Research 130, 56-64, 2018.

2014-2017

  1. Kondo M., Kobayashi K., Ohkura M., Nakai J., and Matsuzaki M.
    Two-photon calcium imaging of the medial prefrontal cortex and hippocampus without cortical invasion.
    eLife 6, e26839, 2017.
    Introduction article
    Vogt N. (2017). Imaging deep in the cortex and beyond. Nature Methods 14, 1131.
  2. *Terada S., *Matsubara D., *Onodera K., Matsuzaki M., Uemura T., and Usui T.
    Neuronal processing of noxious thermal stimuli mediated by dendritic Ca2+influx in Drosophila sensory neurons.
    eLife 5, e12959, 2016.
  3. *Sadakane O., *Masamizu Y., *Watakabe A., *Terada S., Ohtsuka M., Takaji M., Mizukami H., Ozawa K., Kawasaki H., Matsuzaki M., and Yamamori T.
    Long-term two-photon calcium imaging of neuronal populations with subcellular resolution in adult non-human primates.
    Celll Reports 13, 1989-1999, 2015.

    Abstract
    Two-photon imaging with genetically encoded calcium indicators (GECIs) enables long-term observation of neuronal activity in vivo. However, there are very few studies of GECIs in primates. Here, we report a method for long-term imaging of a GECI, GCaMP6f, expressed from adeno-associated virus vectors in cortical neurons of the adult common marmoset (Callithrix jacchus), a small New World primate. We used a tetracycline-inducible expression system to robustly amplify neuronal GCaMP6f expression and up- and downregulate it for more than 100 days. We succeeded in monitoring spontaneous activity not only from hundreds of neurons three-dimensionally distributed in layers 2 and 3 but also from single dendrites and axons in layer 1. Furthermore, we detected selective activities from somata, dendrites, and axons in the somatosensory cortex responding to specific tactile stimuli. Our results provide a way to investigate the organization and plasticity of cortical microcircuits at subcellular resolution in non-human primates.

  4. Hira R., Terada S., Kondo M., and Matsuzaki M.
    Distinct functional modules for discrete and rhythmic forelimb movements in the mouse motor cortex.
    Journal of Neuroscience 35, 13311-13322, 2015.

    Abstract
    Animal behavior has discrete and rhythmic components, such as reaching and locomotion. It is unclear how these movements with distinct dynamics are represented in the cerebral cortex. We investigated the dynamics of movements induced by long-duration transcranial photostimulation on the dorsal cortex of awake channelrhodopsin-2 transgenic mice. We found two domains causing forward and backward discrete forelimb movements and a domain for rhythmic forelimb movements. A domain for forward discrete movement and a domain for rhythmic movement mutually weakened neuronal activity and movement size. The photostimulation of the rhythmic domain also induced non-rhythmic, lever-pull movement, when the lever was present. Thus, the motor cortex has functional modules with distinct dynamics, and each module retains flexibility for adaptation to different environments.

  5. Hira R., Ohkubo F., Masamizu Y., Ohkura M., Nakai J., Okada T., and Matsuzaki M.
    Reward-timing-dependent bidirectional modulation of cortical microcircuits during optical single-neuron operant conditioning.
    Nature Communications 5, 5551, 2014.

    Abstract
    Animals rapidly adapt to environmental change. To reveal how cortical microcircuits are rapidly reorganized when an animal recognizes novel reward contingency, we conduct two photon calcium imaging of layer 2/3 motor cortex neurons in mice and simultaneously reinforce the activity of a single cortical neuron with water delivery. Here we show that when the target neuron is not relevant to a pre-trained forelimb movement, the mouse increases the target neuron activity and the number of rewards delivered during 15-min operant conditioning without changing forelimb movement behavior. The reinforcement bidirectionally modulates the activity of subsets of non-target neurons, independent of distance from the target neuron. The bidirectional modulation depends on the relative timing between the reward delivery and the neuronal activity, and is recreated by pairing reward delivery and photoactivation of a subset of neurons. Reward-timing-dependent bidirectional modulation may be one of the fundamental processes in microcircuit reorganization for rapid adaptation.

  6. *Masamizu Y., *Tanaka Y.R., Tanaka Y.H., Hira R., Ohkubo F., Kitamura K., Isomura Y., Okada T., and Matsuzaki M.
    Two distinct layer-specific dynamics of cortical ensembles during learning of a motor task.
    Nature Neuroscience 17, 987-994, 2014.

    Abstract
    The primary motor cortex (M1) possesses two intermediate layers upstream of the motor-output layer: layer 2/3 (L2/3) and layer 5a (L5a). Although repetitive training often improves motor performance and movement coding by M1 neuronal ensembles, it is unclear how neuronal activities in L2/3 and L5a are reorganized during motor task learning. We conducted two-photon calcium imaging in mouse M1 during 14 training sessions of a self-initiated lever-pull task. In L2/3, the accuracy of neuronal ensemble prediction of lever trajectory remained unchanged globally, with a subset of individual neurons retaining high prediction accuracy throughout the training period. However, in L5a, the ensemble prediction accuracy steadily improved, and one-third of neurons, including subcortical projection neurons, evolved to contribute substantially to ensemble prediction in the late stage of learning. The L2/3 network may represent coordination of signals from other areas throughout learning, whereas L5a may participate in the evolving network representing well-learned movements.

2010-2013

  1. Asrican B., Augustine G.J., Berglund K., Chen S.,  Chow N., Deisseroth K., Feng G., Gloss B., Hira R., Hoffmann C., Kasai H., Katarya M., Kim J., Kudolo J., Lee L., Lo S., Mancuso J., Matsuzaki M., Nakajima R., Qui L., Tan G., Tang Y., Ting J.T., Tsuda S., Wen L., Zhang X, and Zhao S.
    Next-generation transgenic mice for optogenetic analysis of neural circuits.
    Frontiers in Neural Circuits 7, 160, 2013.
  2. *Hayama T., *Noguchi J., Watanabe S., Takahashi N., Hayashi-Takagi A., Ellis-Davies G.C.R., Matsuzaki M., and Kasai H.
    GABA promotes the competitive selection of dendritic spines by controlling local Ca2+ signaling.
    Nature Neuroscience 16, 1409-1416, 2013.
  3. *Hira R., *Ohkubo F., Tanaka Y.R., Masamizu Y., Augustine G.J., Kasai H., and
    Matsuzaki M.
    In vivo optogenetic tracing of functional corticocortical connections
    between motor forelimb areas.
    Frontiers in Neural Circuits 7, 55, 2013.
  4. Hira R., Ohkubo F., Ozawa K., Isomura Y., Kitamura K., Kano M., Kasai H., and Matsuzaki M.
    Spatiotemporal dynamics of functional clusters of neurons in the mouse motor cortex during a voluntary movement.
    Journal of Neuroscience 33, 1377-1390, 2013.
  5. Kimura R., Saiki A., Fujiwara-Tsukamoto Y., Ohkubo F., Kitamura K.,
    Matsuzaki M., Sakai Y. and Isomura Y.
    Reinforcing operandum: rapid and reliable learning of skilled forelimb
    movements by head-fixed rodents.
    Journal of Neurophysiology 108, 1781-92, 2012.
  6. Ako R., Wakimoto M., Ebisu H., Tanno K., Hira R., Kasai H., Matsuzaki M. and Kawasaki H.
    Simultaneous visualization of multiple neuronal properties with single-cell resolution in the living rodent brain.
    Molecular and Cellular Neuroscience 48, 246-257, 2011. @
  7. Kanemoto Y., Matsuzaki M., Morita S., Hayama T., Noguchi J., Senda N., Momotake A., Arai T., and Kasai H.
    Spatial distributions of GABA receptors and local inhibition of Ca2+ transients studied with GABA uncaging in the dendrites of CA1 pyramidal neurons.
    PLoS One 6. e22652, 2011.
  8. Matsuzaki M. and Kasai H.
    Two-Photon Uncaging Microscopy.
    Cold Spring Harbor Protocols, pdb.prot5620, 2011.
  9. Noguchi J., Nagaoka A., Watanabe S., Ellis-Davies G.C.R., Kitamura K., Kano M., Matsuzaki M. and Kasai H.
    In vivo two-photon uncaging of glutamate revealing the structure-function relationships of dendritic spines in the neocortex of adult mice.
    Journal of Physiology 589, 2447-2457, 2011.
  10. Matsuzaki M., Ellis-Davies G.C.R., Kanemoto Y. and Kasai H.
    Simultaneous two-photon activation of presynaptic cells and calcium imaging in postsynaptic dendritic spines.
    Neural Systems & Circuits 1. 2, 2011.
  11. Matsuzaki M., Hayama T., Kasai H. and Ellis-Davies G.C.R.
    Two-photon uncaging of -aminobutyric acid in intact brain tissue.
    Nature Chemical Biology 6, 255-257, 2010.
  12. Obi N., Momotake A., Kanemoto Y., Matsuzaki M., Kasai H. and Arai T.
    1-Acyl-5-methoxy-8-nitro-1,2-dihydroquinoline: A biologically useful photolabile precursor of carboxylic acids.
    Tetrahedron letters 51. 1642-1647, 2010.
  13. *Kantevari S., *Matsuzaki M., Kanemoto Y., Kasai H. and Ellis-Davies G.C.R.
    Two-color, two-photon uncaging of glutamate and GABA.
    Nature Methods 7. 123-125, 2010.

2005-2009

  1. Hira R., Honkura N., Noguchi J., Maruyama Y., Augustine G.J., Kasai H. and Matsuzaki M.
    Transcranial optogenetic stimulation for functional mapping of the motor cortex.
    Journal of Neuroscience Methods 179. 258-263, 2009.
  2. Yasumatsu N., Matsuzaki M., Miyazaki T., Noguchi J. and Kasai H.
    Principles of long-term dynamics of dendritic spines.
    Journal of Neuroscience 28. 13592-13608, 2008.
  3. Honkura N., Matsuzaki M., Noguchi J., Ellis-Davies G.C.R. and Kasai H.
    The subspine organization of actin fibers regulates the structure and plasticity of dendritic spines.
    Neuron 57. 719-729, 2008.
  4. Tanaka J., Horiike Y., Matsuzaki M., Miyazaki T., Ellis-Davies G.C.R. and Kasai H.
    Protein-synthesis and neurotrophin dependent structural plasticity of single dendritic spines.
    Science 319. 1683-1687, 2008.
  5. Matsuzaki M., Ellis-Davies G.C.R. and Kasai H.
    High-resolution mapping of synaptic connections by two-photon macro photolysis of caged glutamate.
    Journal of Neurophysiology 99. 1535-1544, 2008.
  6. Ellis-Davies G..C.R., Matsuzaki M., Paukert M., Kasai H. and Bergles D.E.
    4-carboxymethoxy-5,7-dinitroindolinyl-glu: an improved caged glutamate for expeditious ultraviolet and 2-photon photolysis in brain slices.
    Journal of Neuroscience 27. 6601-6604, 2007.
  7. *Wang H., *Peca J., *Matsuzaki M., Matsuzaki K., Noguchi J., Qiu L., Wang D., Zhang F., Boyden E., Deisseroth K., Kasai H., Hall W.C., Feng G., and Augustine G.J.
    High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice.
    Proceedings of the National Academy of Sciences of the United States of America. 104. 8143-8148, 2007.
  8. Matsuzaki M.
    Factors critical for the plasticity of dendritic spines and memory storage.
    Neuroscience Research 57. 1-9, 2007.
  9. Ohkura M., Matsuzaki M., Kasai H., Imoto K. and Nakai J.
    Genetically encoded bright Ca2+ probe applicable for dynamic Ca2+ imaging of dendritic spines.
    Analytical Chemistry 77. 5861-5869, 2005.
  10. Noguchi J., Matsuzaki M., Ellis-Davies G.C.R. and Kasai H.
    Spine-neck geometry determines NMDA-receptor dependent Ca2+ signaling in dendrites.
    Neuron 46. 609-622, 2005.
  11. Tanaka J., Matsuzaki M., Tarusawa E., Momiyama A., Molnar E., Kasai H. and Shigemoto R.
    Number and density of AMPA receptors in single synapses in immature cerebellum.
    Journal of Neuroscience 25. 799-807, 2005.

2000-2004

  1. Sakai N., Tsubokawa H., Matsuzaki M., Kajimoto T., Takahashi E., Ren Y., Ohmori S., Shirai Y., Matsubayashi H., Chen J., Duman RS., Kasai H. and Saito N.
    Propagation of PKC translocation along the dendrites of Purkinje cell in PKC-GFP transgenic mice.
    Genes to Cells 9. 945-57, 2004.
  2. Matsuzaki M., Honkura N., Ellis-Davies G.C.R. and Kasai H.
    Structural basis of long-term potentiation in single dendritic spines.
    Nature 429. 761-766 2004.
  3. Kasai H., Matsuzaki M., Noguchi J., Yasumatsu N. and Nakahara H.
    Structure-stability-function relationships of dendritic spines.
    Trends in Neurosciences 26. 360-368, 2003.
  4. Matsuzaki M., Ellis-Davies G.C.R., Nemoto T., Miyashita Y., Iino M. and Kasai H.
    Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons.
    Nature Neuroscience 4. 1086-1092, 2001.

-1999

  1. Matsuzaki M. and Saigo K.
    hedgehog signaling independent of engrailed and wingless required for post-S1 neuroblast formation in Drosophila CNS.
    Development 122. 3567-3575, 1996.
  2. Higashijima S., Shishido E., Matsuzaki M. and Saigo K.
    eagle, a member of the steroid receptor gene superfamily is expressed in a subset of neuroblasts and regulates the fate of their putative progeny in the Drosophila CNS.
    Development 122. 527-536, 1996.