○目的: マルチアレル多型におけるHWE平衡からの逸脱を評価する。 適用例1:単一ローカスに複数の多型が存在する場合。HLA遺伝子など 適用例2:CNV多型(別途染色体毎のコピー数推定が必要)

〇方法

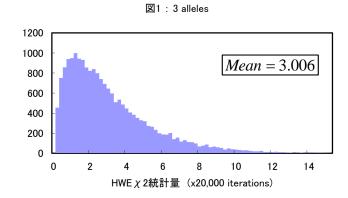
- ・1 locus における kアレル多型で構成された、Nサンプルに対するディプロタイプデータを対象とする。
- •アレル i の観測頻度を、f(i) とする。(i=1…k)
- ・アレル i, j で構成されるディプロタイプの観測度数を O_{ii}, 期待度数を E_{ii} とする。

下記定義式に従い、 $HWE\chi^2$ 統計量(= X_{HWE}) 及び対応するP値(= P_{HWE}) を求める。

$$\begin{split} E_{ij} &= 2N f_{(i)} f_{(j)} \qquad (i \neq j), \\ N f_{(i)} f_{(j)} \qquad (i = j). \\ X_{HWE} &= \sum_{i=1}^k \sum_{j=i}^k \frac{\left(O_{ij} - E_{ij}\right)^2}{E_{ij}}. \\ X_{HWE} &\sim \chi^2_{(df)}, \quad df = \left(\frac{k(k+1)}{2} - 1\right) - (k-1) = \frac{k(k-1)}{2}. \end{split}$$

- ・ハプロタイプレベルでのパーミュテーションを行い、各ステップでのX_{HWE}を得る。
- ・得られた分布を、帰無仮説下(HWE平衡からの逸脱が無い状態)でのXHWEの分布と仮定し、パーミュテーションP値(=PHWE, Perm)を求める。
- 得られた分布と、χ²(th) との合致を、適合度検定で評価する。

〇結果


①:3アレル多型データに対して

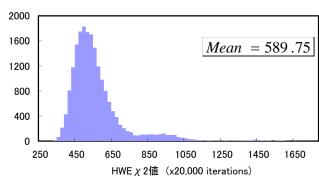
ディプロタイプ	O _{ij} E _{ij}		(O-E)^2/E	
A/A	210	202.01	0.316	
A/B	580	619.08	2.467	
A/C	1010	986.91	0.540	
B/B	500	474.32	1.390	
B/C	1500	1512.28	0.100	
C/C	1200	1205.41	0.024	
sum	5000	5000	4 838	

アレル	f _(i)		
Α	0.201		
В	0.308		
С	0.491		
sum	1		

X_{HWE}=4.838, P_{HWE}=0.1840

k=3, df=3

P_{HWE} Perm</sub>=0.1829 (x100,000 iterations)


適合度検定P値=1

⇒パーミュテーションの結果、 $df=30 \chi^2$ 分布に合致した分布が得られた。 $HWE \chi^2$ 統計量から得たP値と、パーミュテーションで得たP値がほぼ同一の値となった。

②:2410名のRA検体におけるHLA-DRB1アレルに対して

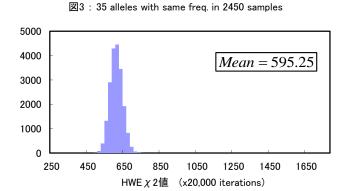
アレルNo.	観測数	f _(i)	アレルNo.	観測数	f _(i)
1	1208	25.1%	19	53	1.1%
2	827	17.2%	20	52	1.1%
3	414	8.6%	21	35	0.7%
4	321	6.7%	22	12	0.2%
5	277	5.7%	23	12	0.2%
6	272	5.6%	24	10	0.2%
7	193	4.0%	25	10	0.2%
8	163	3.4%	26	5	0.1%
9	123	2.6%	27	3	0.1%
10	123	2.6%	28	2	0.0%
11	117	2.4%	29	2	0.0%
12	116	2.4%	30	1	0.0%
13	109	2.3%	31	1	0.0%
14	101	2.1%	32	1	0.0%
15	74	1.5%	33	1	0.0%
16	68	1.4%	34	1	0.0%
17	58	1.2%	35	1	0.0%
18	54	1.1%	sum	4820	100%

図2: 35DRB1 alleles in 2410 RA cases

k=35, df=595

X_{HWE}=661.68, **P_{HWE}**=0.0298

P_{HWE, Perm}=0.1471 (x100,000 iterations)

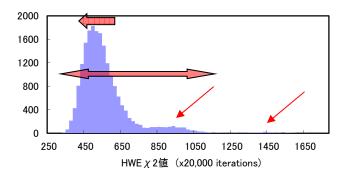

適合度検定P値≒0

⇒パーミュテーションの結果、df=595の χ^2 分布と合致しない分布が得られた。 HWE χ^2 統計量から得たP値と、パーミュテーションで得たP値に差を認めた。

*:②例では、期待度数の低いディプロタイプが多く存在し、漸近近似が不適切であった可能性が考えられた。

k=35, df=595 適合度検定P値=1

- \Rightarrow df=595の χ^2 分布に合致した分布が得られた。
- ⇒図2における χ^2 分布からの逸脱の要因として 低ディプロタイプ期待頻度の影響が考えられた。


〇考察

- ・ディプロタイプ期待頻度が低い場合、通常のHWE χ^2 値は想定される自由度の χ^2 分布からの乖離を生じると考えられた。
- ・パーミュテーションを用いることにより、期待度数が低い場合においてHWEP値をより適切に求めることができると考えられた。

〇分布偏移の要因

- ・図2における分布の偏移(I~III)と、低期待頻度との関連
 - I:平均値の偏移・・・実質的な自由度が引低くなるため
 - II:第2/3ピークの出現・・・期待度数の低いセルに高い観測度数が含まれる場合、 χ^2 値がinflationするため
 - Ⅲ:分散の増大・・・Ⅰ+Ⅱ(?)

図2: 35DRB1 alleles in 2410 RA cases

