みなさま、本日は改めてどうぞ宜しくお願い致します。 私は押鐘浩之と申しまして、大学教員をしている者です。 私がラボHP代わりに立てているwikiに今回の実習についてコメントさせて頂きました。
今回はご縁があり、分子生物学実験と称して青山高校での実習を担当させて頂きます。 この場を借りまして、本実習開催にご尽力頂いた坂庭先生、早川先生に御礼を申し上げると共に、 ご縁を繋いで頂いた音楽科・桑野先生には心から感謝させて頂ければと思います。
++++講師プロフィール| 都立日比谷高校、京都大学、東京大学大学院、東京工業大学大学院を経て博士(理学)取得後、 英国Medical Research Council分子生物学研究所研究員およびケンブリッジ大学Research Associateとして研鑽を積み、 帰国後、帝京大学医学部助教、同医療技術学部臨床検査学科講師(現在に至る)。 専門は生化学、分子生物学、分析化学、生物物理学、微生物学など。
研究テーマとして、タンパク質関連の研究(パーキンソン病病因タンパク質の動態など)を行ってきたが、 学生発案の研究テーマも積極的に取り入れている(例:カピバラの腸内環境に対する研究)。 最近では、帝京大学文化財研究所との共同研究で、考古学分野の研究も行っている。
【ひとこと】 今回は、高校時代のオーケストラで同期だった桑野先生のご紹介で この様な素晴らしい機会を持つことができました。有難うございます。 高校の友達は、かけがいのない一生モノであると私は感じています。 皆さんにおかれましても、是非いまいる友達を大切にして頂ければと願っております。 ++++
本実習では米粉・小麦粉といった身近な試料からDNAを抽出できるということ、 またアガロース電気泳動を通じてDNAを可視化できる、ということを体験して頂ければと思っております。 近年、高校生物および大学受験生物において、分子生物学的内容が多くなってきています。 また2019年のCOVID-19のアウトブレイクにより、“PCR”という言葉を聞かない日がございません。 実際にDNAを扱った実験を実施することによって、 高校生物の内容の充実は勿論のこと、将来的にこの種の実験・研究にも興味を持って頂ければ嬉しいです。
3人または4人班を組んで頂き、全4班で実習を実施致します。 また真ん中の机は遠心機や電気泳動槽など共有機器を置くスペースとし、 前後に分かれて座って頂く形と致します。
本実習の手技について、実験者視点での動画を作成致しました。 ただ機材の関係上、最長で5分の動画しか作れなかったため 分割してyoutubeにアップロードしてあります。 適宜、予・復習にお役立て頂ければと思います。
<WRAP center round box 60%> <HTML> <iframe width=“560” height=“315” src=“https://www.youtube.com/embed/jF2L4k5JacE” title=“YouTube video player” frameborder=“0” allow=“accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture” allowfullscreen></iframe> </HTML>
</WRAP>
<WRAP center round box 60%> <HTML> <iframe width=“560” height=“315” src=“https://www.youtube.com/embed/dJG6kHKsn1c” title=“YouTube video player” frameborder=“0” allow=“accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture” allowfullscreen></iframe> </HTML> </WRAP>
<WRAP center round box 60%> <HTML> <iframe width=“560” height=“315” src=“https://www.youtube.com/embed/rX-yxRdd-3w” title=“YouTube video player” frameborder=“0” allow=“accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture” allowfullscreen></iframe> </HTML> <HTML> <iframe width=“560” height=“315” src=“https://www.youtube.com/embed/58H1hthMrZQ” title=“YouTube video player” frameborder=“0” allow=“accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture” allowfullscreen></iframe> </HTML> <HTML> <iframe width=“560” height=“315” src=“https://www.youtube.com/embed/T7SPOehMdUs” title=“YouTube video player” frameborder=“0” allow=“accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture” allowfullscreen></iframe> </HTML> </WRAP>
<WRAP center round box 60%> <HTML> <iframe width=“560” height=“315” src=“https://www.youtube.com/embed/p3zf-dZDmVg” title=“YouTube video player” frameborder=“0” allow=“accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture” allowfullscreen></iframe> </HTML> <HTML> <iframe width=“560” height=“315” src=“https://www.youtube.com/embed/cnxdOklDJwE” title=“YouTube video player” frameborder=“0” allow=“accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture” allowfullscreen></iframe> </HTML> <HTML> <iframe width=“560” height=“315” src=“https://www.youtube.com/embed/U3Q0cBAc3Ug” title=“YouTube video player” frameborder=“0” allow=“accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture” allowfullscreen></iframe> </HTML> </WRAP>
<WRAP center round box 60%> 電気泳動結果をiPhoneのカメラで撮影したのが下の図です。 スマートフォンのカメラでも充分きれいに撮影ができます。
ちなみにサイズマーカーは アンテグラル社 XL Ladderというものを使用しています。 ここから、自分が流したDNAサンプルのサイズ(塩基対)が分かります。 </WRAP>
今回PCRで標的とした遺伝子は、皆さんも学習されたと思いますがRuBisCOといって、 光合成の暗反応(カルビン・ベンソン回路)において実質的に炭酸固定を行うkeyとなる酵素です。 RuBisCOは4次構造として、小サブユニットと大サブユニットとが複合体をなす酵素であり、 興味深いことに緑色植物で小サブユニットは核DNA由来、大サブユニットは葉緑体由来です。 核由来の小サブユニットは細胞質のリボソームで翻訳された後、 葉緑体へ移動することで(N末端に葉緑体移行シグナルが存在する)、 葉緑体内で大サブユニットと複合体を形成して初めて、RuBisCOとして機能します。
したがって、今回PCRの標的とした遺伝子は、もう少し厳密に言うと 核にコードされたRuBIsCO小サブユニット遺伝子、ということになります。
今回、コメ由来のRuBisCO小サブユニット遺伝子を増幅するために使用した PCRプライマーの設計について、少し解説したいと思います。 ちなみに、プライマーを設計するのに役に立つ編集ソフトとして Freeソフトとして例えばApeなどがありますので、 興味ある方はダウンロードしてみては、と思います。
今回使用したプライマーの配列は、以下の通りです。 Fw:TGGTGAGCTGCAGAGATGG Rv:TTAGTTGCCACCAGACTCCTC
また、コメおよび小麦のRuBisCO小サブユニット遺伝子の配列は以下の通りです。 (図中、黄色い部分がタンパク質をコードしている配列。 ただし、コメではイントロンが1か所あるので、その部分は小文字にしている。)
Oriza sativa RuBisCO small subunit gene agccagagcccgggtcgagatgccaccacggccacaatccacgagcccggcgcgacaccaccgcgcgcgcgtgagccagccacaaacgcccgcggataggcgcgcgcacgccggccaatcctaccacatccccggcctccgcggctcgcgagcgccgctgccatccgatccgctgagttttggctatttatacgtaccgcgggagcctgtgtgcagagcagtgcatctcaagaagtactcgagcaaagaaggagagagcttggtgagctgcagag<wrap hi>ATGGCCCCCTCCGTGATGGCGTCGTCGGCCACCACCGTCGCTCCCTTCCAGGGGCTCAAGTCCACCGCCGGCATGCCCGTCGCCCGCCGCTCCGGCAACTCCAGCTTCGGCAACGTCAGCAATGGCGGCAGGATCAGGTGCATGCaggtaataacctactgacccaacacacattattcttcttcttcttcttcttcttcttcttcttcttcttcaacattaaccaataattcaattatcgtttatttAGGTGTGGCCGATTGAGGGCATCAAGAAGTTCGAGACCCTCTCCTACCTGCCACCGCTCACCGTGGAGGACCTCCTGAAGCAGATCGAGTACCTGCTCCGTTCCAAGTGGGTGCCCTGCCTCGAGTTCAGCAAGGTCGGATTCGTCTACCGTGAGAACCACAGATCCCCCGGATACTACGATGGCAGGTACTGGACCATGTGGAAGCTGCCCATGTTCGGGTGCACTGACGCCACCCAGGTGCTCAAGGAGCTCGAGGAGGCCAAGAAGGCGTACCCTGATGCATTCGTCCGTATCATCGGCTTCGACAACGTCAGGCAGGTGCAGCTCATCAGCTTCATCGCCTACAAGCCCCCGGGCTGCGAGGAGTCTGGTGGCAACTAA</wrap>gccgtcatcgtcatatatagccttgtttaattgttcatctctgattcgatgatgtctcccaccttgtttcgtgtgttcccagtttgttcatcgtcttttgattttaccggccgtgctctgcttttgtttttgtttcacctgatctctctctgacttgatgtaagagtggtatctgctacgactatatgttgttgggtgaggcatatgtgaatgaaatatatggaagctccggctatatatatttatacaaagggtacgagatggatgtgaa
Triticum aestivum RuBisCO small subunit gene agagtgcctcctcctagcaagctatatacctacatagtacagcc<wrap hi>ATGGCCCCCACCGTGATGGCCTCGTCGGCCACCTCCGTCGCTCCTTTCCAGGGGCTCAAGTCCACCGCCGGCCTCCCCGTCAGCCGCCGCTCCAACGGCGCTAGCCTCGGCAGCGTCAGCAACGGTGGAAGGATCAGGTGCATGCAGGTGTGGCCCATCGAGGGCATTAAGAAGTTCGAGACCCTGTCCTACCTGCCACCGCTCAGCACAGAGGCCCTCCTCAAGCAGGTCGACTACCTGATCCGCTCCAAGTGGGTGCCTTGCCTCGAGTTCAGCAAGGTTGGGTTTATCTTCCGTGAGCACAACGCATCCCCTGGGTACTACGATGGCCGGTACTGGACAATGTGGAAGCTGCCTATGTTCGGGTGCACCGACGCCACGCAGGTGATCAACGAGGTGGAGGAGGTCAAGAAGGAGTACCCTGACGCGTATGTCCGCATCATCGGATTCGACAACATGCGCCAGGTGCAGTGCGTCAGCTTCATCGCCTTCAAGCCACCGGGCTGCGAGGAGTCCGGCAAGGCCTAA</wrap>acagctcactcaccacgggccacatataaagtgccattgcggttttgtcaactctgacattgctttgggttttcct
プライマーの設計のルールとしては、以下の通りです。 <WRAP center round box 90%> ①TmがFw, Rvとも50~60℃程度で一緒くらいにする ②共に3'末端はCまたはGにする ③GC含量は40-60%程度にする それと、ゲノムから増幅させる場合は: ④設計した配列についてBLASTにかけ、似すぎる配列がないか一応確かめる。 </WRAP>
それぞれの理由について解説します。
①のポイントについて、先ずTmという言葉について解説しないといけません。 Tmというのは融解温度と言われており、定義としては「そのDNAの50%が相補鎖と水素結合をする温度」です。 皆さんも図表などでA:Tペアは水素結合が2本、G:Cペアは3本であることを見たことがあると思いますが、 水素結合は温度依存性があって、温度が高くなるについて切断されます。 したがって、A:TペアはG:Cペアに比べて水素結合が切断されやすいということが分かると思います。 Tm値計算においては経験的にAとTは2℃、GとCは4℃、などと簡易的に計算することがあります。 例えば、ATGGCCATAAGACTGというプライマーのTmは、 2+2+4+4+4+4+2+2+2+2+4+2+4+2+4といった感じで計算できます。
PCRの原理として、プライマーは鋳型DNAに「ちょうどよく」結合することが必要です。 「ちょうどよく」というのは、プライマーが目的とする鋳型配列に対して特異的に結合して、 かつ熱変性ステップではがれてくれる必要があります。 したがって、プライマーのTm値が低すぎると、ひょっとしたら鋳型の他の箇所に結合してしまう可能性もありますし、 また高すぎると熱変性ステップ(95℃)ではがれてくれないかもしれません。
そういった理由から、「ちょうどよい」Tmとして50~60℃になるようにプライマーを設計します。 また、このTm値をアニーリングステップ(熱変性の後のステップ)の温度として採用します。
②のポイントは、特異的結合を担保するための工夫になります。 もちろん3'末端がAやTでもPCRが上手くいくこともありますが、 GやCの方が水素結合が3本ありますので、特異的結合に寄与します。
③のポイントは、①にも関連しています。 GC含量が少なすぎると、特異的結合という意味で信頼性を失います。 逆にGC含量が多すぎると、鋳型DNAに対して結合しすぎる、という可能性があります。 経験的に、GC含量はこのくらいで収まるのが良いとされています。
④のポイントについて、BLASTについて説明しなくてはなりません。
BLASTとは、DNA配列のGoogle検索的なもの、と思って頂ければと思います。
使い方は至って簡単です。
https://blast.ncbi.nlm.nih.gov/Blast.cgi
HPが英語で取っつきにくいかもしれませんが、
今回はDNA配列について調べたいので“nucleotide BLAST”を選択します。
次に“Enter accession number(s), gi(s), or FASTA sequence(s)“という窓がありますので、
そこに自分が調べたいDNA配列を放り込みます。
最後に、下にある”BLAST”というボタンを押せばOKです。
(ただ、今回はコメ由来DNAが鋳型ですので、“organism”にコメの学名である“Oriza sativa”を入れて
コメ遺伝子の中で検索をかけた方が、④の目的に叶うと思います。)
すると、自分が調べたいDNA配列に対して、似ている順にDNA配列が表示されます。
(例えば上に貼り付けたコメ由来RuBIsCO遺伝子とか貼り付けてみて、遊んでみて頂ければと思います。)
自分が設計したプライマー配列が、目的遺伝子以外の配列と似ているとしたら もう少しプライマー配列を考え直した方が良いかもしれません。
以上、①~④の吟味をして、今回使用するプライマー配列を考え出しています。 最初に紹介しているApeなどのソフトを使用すれば、 簡単にプライマーを設計することが可能です(私もApeを使用しています)。 また今回設計したプライマーはコメのRuBisCO遺伝子配列には結合するが、 小麦には結合しないことも分かると思います。 だからこそ、今回のプライマーを用いてコメのRuBisCO遺伝子だけを「特異的に」増幅できる ということが配列から既に予想できると思います。
実習書にあるrpmとは、rotation per minuteの略であり、 1分あたりの回転数を示している(例えば3,000 rpmであれば、1分間に3,000回転という意味になる)。 それに対して、gは重力加速度を示しており、例えば3,000 gは地球の重力の3,000倍の力をかけている、という意味になります。
ここで注意したいのは、gは重力という不変的な値であるのに対して、 rpmはローター径によって実際にかかる力が違ってくる、という点です。 したがって、レポート、学会や論文等では、gで記載することがルールとなっています (若しくは、「xxというメーカーのxxというローターでxxxx rpmで回転させた」と記載しても、 実験の再現性を担保できているのでOK)。
gとrpmの間の変換は:
<WRAP center round box 60%>
g = (rpm)2 × r × 1.12 × 10-5
ただし、rはローターの半径(cm)
</WRAP>
を用いて計算することもできます。
ちなみに、今回の遠心機では12,000 rpmで約6,900 gです。
ただ、実験時にいちいちrpmやらgを計算するのも面倒なので 古典的にはノモグラム(gとrpm、ローターの半径の対応表)を使ってきた経緯があります。 現在は、例えばインターネット上のツール(https://www.kubotacorp.co.jp/calc/等)を使用できるほか、 遠心機にrpmとgの両方を表示するものが多くなってきたこともあり、 簡単にrpmとgとの間を変換できるようになっています。
遠心機はDNAなどの実験を行うのに必須となる実験機器です。 今回、例えば米粉・小麦粉についてBuffer A・Bを入れてDNAを溶出し遠心分離することで、 DNAを抽出した残りかす(研究現場ではデブリ:debrisといいます)と分離しました。 何故デブリが沈殿するかというと、DNA溶液に対してデブリの方が密度が大きいからです。 遠心分離は、物質間の密度の差を利用して分離を可能にする、と考えると良いです。
例えば、皆さんも恐らくDNAの半保存的複製というところでメセルソン・スタールの実験について 学習されていることとは思いますが、ここでも実験テクニックとして遠心分離が登場します。 14NでできたDNAよりも15NでできたDNAの方が重い、 もう少し厳密にいうと、単位体積あたりの重さ(=密度)が違う。 だからこそ、14Nと15NのDNAを分離できた、ということになります。
ちなみにメセルソン・スタールの実験では「密度勾配遠心」という特殊な遠心法を用いており、 ちょうど良い濃度の塩化セシウム溶液(水に比べて密度が高い)に対して 超遠心と呼ばれる、通常の遠心機よりも大きいgをかけられる遠心機を用いて ちょうど良い時間遠心をすることによって、教科書や資料集にもある様な例の結果が得られています。 「ちょうど良い」が2回現れましたが、実験結果をキレイに見せる条件を試行錯誤しながら求めるのも 研究という作業の1つになります。