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Abstract We explain the proliferation of panel data studies in terms of (i) data
availability, (ii) the more heightened capacity for modeling the complexity of hu-
man behavior than a single cross-section or time series data can possibly allow, and
(iii) challenging methodology. Advantages and issues of panel data modeling are also
discussed.
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1 Introduction

Panel data or longitudinal data typically refer to data containing time series obser-
vations of a number of individuals. Therefore, observations in panel data involve at
least two dimensions; a cross-sectional dimension, indicated by subscript i, and a
time series dimension, indicated by subscript . However, panel data could have a
more complicated clustering or hierarchical structure. For instance, variable y may
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be the measurement of the level of air pollution at station £ in city j of country i
at time ¢ (e.g., Antweiler 2001; Davis 2002). For ease of exposition, I shall confine
my presentation to a balanced panel involving N cross-sectional units, i =1, ..., N,
over T time periods, t =1,....T.

There is a proliferation of panel data studies, be it methodological or empirical. In
1986, when Hsiao’s (1986) first edition of Panel Data Analysis was published, there
were 29 studies listing the key words: “panel data or longitudinal data”, according to
Social Sciences Citation index. By 2004 there were 687, and by 2005 there were 773.
The growth of applied studies and the methodological development of new econo-
metric tools of panel data have been simply phenomenal since the seminal paper of
Balestra and Nerlove (1966).

There are at least three factors contributing to the geometric growth of panel data
studies: (i) data availability, (ii) greater capacity for modeling the complexity of hu-
man behavior than a single cross-section or time series data, and (iii) challenging
methodology. In what follows we shall briefly elaborate each of these one by one.
However, it is impossible to do justice to the vast literature on panel data. For further
reference, see Arellano (2003), Baltagi (2001), Hsiao (2003), Mdtyds and Sevestre
(1996), and Nerlove (2002), etc.

2 Data availability

The collection of panel data is obviously much more costly than the collection of
cross-sectional or time series data. However, panel data have become widely available
in both developed and developing countries.

The two most prominent panel data sets in the US are the National Longitudinal
Surveys of Labor Market Experience (NLS) and the University of Michigan’s Panel
Study of Income Dynamics (PSID). The NLS began in the mid 1960’s. It contains five
separate annual surveys covering distinct segments of the labor force with different
spans: men whose ages were 45 to 59 in 1966, young men 14 to 24 in 1966, women
30 to 44 in 1967, young women 14 to 24 in 1968, and youth of both sexes 14 to 21
in 1979. In 1986 the NLS expanded to include annual surveys of the children born to
women who participated in the National Longitudinal Survey of Youth 1979. The list
of variables surveyed is running into the thousands, with emphasis on the supply side
of market.

The PSID began with collection of annual economic information from a represen-
tative national sample of about 6,000 families and 15,000 individuals in 1968 and has
continued to the present. The data set contains over 5,000 variables (Becketti et al.
1988). In addition to the NLS and PSID data sets, there are many other panel data
sets that could be of interest to economists, see Juster (2000).

In Europe many countries have their annual national or more frequent surveys
such as the Netherlands Socio-Economic Panel (SEP), the German Social Economics
Panel (GSOEP), the Luxembourg Social Panel (PSELL), the British Household Panel
Survey (BHS), etc. Starting in 1994, the National Data Collection Units (NDUS) of
the Statistical Office of the European Committees have been coordinating and linking
existing national panels with centrally designed multi-purpose annual longitudinal
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surveys. The European Community Household Panel (ECHP) is published in Euro-
stat’s reference data base New Cronos in three domains: health, housing, and income
and living conditions.

Panel data have also become increasingly available in developing countries. In
these countries there may not have been a long tradition of statistical collection. It
is of special importance to obtain original survey data to answer many significant
and important questions. Many international agencies have sponsored and helped to
design panel surveys. For instance, the Dutch non-government organization (NGO),
ICS, Africa, collaborated with the Kenya Ministry of Health to carry out a Primary
School Deworming Project (PDSP). The project took place in Busia district, a poor
and densely-settled farming region in western Kenya. The 75 project schools included
nearly all rural primary schools in this area, with over 30,000 enrolled pupils between
the ages of six to eighteen from 1998-2001. Another example is the Development
Research Institute of the Research Center for Rural Development of the State Council
of China, in collaboration with the World Bank, which undertook an annual survey
of 200 large Chinese township and village enterprises from 1984 to 1990.

3 Advantages of panel data

Panel data, by blending the inter-individual differences and intra-individual dynam-
ics, have several advantages over cross-sectional or time-series data:

(i) More accurate inference of model parameters. Panel data usually contain more
degrees of freedom and more sample variability than cross-sectional data which
may be viewed as a panel with 7 = 1, or time series data which is a panel with
N =1, hence improving the efficiency of econometric estimates (e.g., Hsiao
et al. 1995).

(ii) Greater capacity for capturing the complexity of human behavior than a single
cross-section or time series data. These include:

(i.a) Constructing and testing more complicated behavioral hypotheses. For in-
stance, consider the example of Ben-Porath (1973) that a cross-sectional
sample of married women was found to have an average yearly labor-force
participation rate of 50 percent. These could be the outcome of random
draws from a homogeneous population or could be draws from heteroge-
neous populations in which 50% were from the population who always
work and 50% who never work. If the sample was from the former, each
woman would be expected to spend half of her married life in the labor
force and half out of the labor force. The job turnover rate would be ex-
pected to be frequent and the average job duration would be about two
years. If the sample was from the latter, there is no turnover. The cur-
rent information about a woman’s work status is a perfect predictor of
her future work status. A cross-sectional data is not able to distinguish
between these two possibilities, but panel data can because the sequential
observations for a number of women contain information about their labor
participation in different subintervals of their life cycle.
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(ii.b)

(ii.c)
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Another example is the evaluation of the effectiveness of social pro-
grams (e.g., Heckman et al. 1998; Hsiao et al. 2006; Rosenbaum and Ru-
bin 1985). Evaluating the effectiveness of certain programs using cross-
sectional sample typically suffers from the fact that those receiving treat-
ment are different from those without. In other words, one does not si-
multaneously observe what happens to an individual when she receives
treatment or when she does not. An individual is observed as either receiv-
ing treatment or not receiving treatment. Using the difference between the
treatment group and the control group could suffer from two sources of
biases: selection bias due to differences in observable factors between the
treatment and control groups, and selection bias due to endogeneity of par-
ticipation in treatment. For instance, Northern Territory (NT) in Australia
decriminalized possession of small amount of marijuana in 1996. Evalu-
ating the effects of decriminalization on marijuana smoking behavior by
comparing the differences between NT and other states that were still non-
decriminalized could suffer from either or both sorts of bias. If panel data
over this time period were available, it would allow the possibility of ob-
serving the before- and affect-effects on individuals of decriminalization
as well as the possibility of isolating the effects of treatment from other
factors affecting the outcome.

Controlling the impact of omitted variables. It is frequently argued that
the real reason one finds (or does not find) certain effects is due to ig-
noring the effects of certain variables in one’s model specification which
are correlated with the included explanatory variables. Panel data contain
information on both the intertemporal dynamics and the individuality of
the entities and may allow one to control the effects of missing or unob-
served variables. For instance, MaCurdy’s (1981) life-cycle labor supply
model under certainty implies that, because the logarithm of a worker’s
hours worked is a linear function of the logarithm of her wage rate and
the logarithm of worker’s marginal utility of initial wealth, leaving out the
logarithm of the worker’s marginal utility of initial wealth from the re-
gression of hours worked on wage rate because it is unobserved can lead
to seriously biased inference on the wage elasticity on hours worked since
initial wealth is likely to be correlated with wage rate. However, since a
worker’s marginal utility of initial wealth stays constant over time, if time
series observations of an individual are available, one can take the differ-
ence of a worker’s labor supply equation over time to eliminate the effect
of marginal utility of initial wealth on hours worked. The rate of change
of an individual’s hours worked now depends only on the rate of change
of her wage rate. It no longer depends on her marginal utility of initial
wealth.

Uncovering dynamic relationships. “Economic behavior is inherently dy-
namic so that most econometrically interesting relationships are explicitly
or implicitly dynamic” (Nerlove 2002). However, the estimation of time-
adjustment pattern using time series data often has to rely on arbitrary
prior restrictions such as Koyck or Almon distributed lag models because
time series observations of current and lagged variables are likely to be
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highly collinear (e.g., Griliches 1967). With panel data we can rely on the
inter-individual differences to reduce the collinearity between current and
lag variables to estimate unrestricted time-adjustment patterns (e.g., Pakes
and Griliches 1984).

(ii.d) Generating more accurate predictions for individual outcomes by pooling
the data rather than generating predictions of individual outcomes using
the data on the individual in question. If individual behaviors are similar,
conditional on certain variables, panel data provide the possibility of learn-
ing an individual’s behavior by observing the behavior of others. Thus, it
is possible to obtain a more accurate description of an individual’s behav-
ior by supplementing observations of the individual in question with data
on other individuals (e.g., Hsiao et al. 1993, 1989).

(ii.e) Providing micro foundations for aggregate data analysis. Aggregate data
analysis often invokes the “representative agent” assumption. However,
if micro units are heterogeneous, not only can the time series properties
of aggregate data be very different from those of disaggregate data (e.g.,
Granger 1990; Lewbel 1994; Pesaran 2003), but policy evaluation based
on aggregate data may be grossly misleading. Furthermore, the prediction
of aggregate outcomes using aggregate data can be less accurate than the
prediction based on micro-equations (e.g., Hsiao et al. 2005). Panel data
containing time series observations for a number of individuals is ideal for
investigating the “homogeneity” versus “heterogeneity” issue.

(iii) Simplifying computation and statistical inference. Panel data involve at least
two dimensions: a cross-sectional dimension and a time series dimension. Un-
der normal circumstances one would expect that the computation of panel data
estimator or inference would be more complicated than cross-sectional or time
series data. However, in certain cases, the availability of panel data actually sim-
plifies computation and inference. For instance:

(iii.a) Analysis of nonstationary time series. When time series data are not
stationary, the large sample approximation of the distributions of the
least-squares or maximum likelihood estimators are no longer normally
distributed, (e.g., Anderson 1959; Dickey and Fuller 1979; Dickey and
Fuller 1981; Phillips and Durlauf 1986). But if panel data are avail-
able, and observations among cross-sectional units are independent, then
one can invoke the central limit theorem across cross-sectional units to
show that the limiting distributions of many estimators remain asymptot-
ically normal (e.g., Binder et al. 2005; Levin et al. 2002; Im et al. 2003;
Phillips and Moon 1999).

(iii.b) Measurement errors. Measurement errors can lead to under-identification
of an econometric model (e.g., Aigner et al. 1984). The availability of
multiple observations for a given individual or at a given time may al-
low a researcher to make different transformations to induce different
and deducible changes in the estimators; hence, to identify an other-
wise unidentified model (e.g., Bigrn 1992; Griliches and Hausman 1986;
Wansbeek and Koning 1989).

(ili.c) Dynamic Tobit models. When a variable is truncated or censored, the
actual realized value is unobserved. If an outcome variable depends on
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previous realized value and the previous realized value is unobserved, one
has to take integration over the truncated range to obtain the likelihood of
the observables. In a dynamic framework with multiple missing values,
multiple integration is computationally unfeasible. With panel data the
problem can be simplified by only focusing on the subsample in which
previous realized values are observed (e.g., Arellano et al. 1999).

4 Methodology

Standard statistical methodology is based on the assumption that the outcomes, say y,
conditional on certain variables, say x, are random draws from a probability distri-
bution that is characterized by a fixed dimensional parameter vector, 8, f(y | x; 8).
For instance, the standard linear regression model assumes that f(y | x; §) takes the
form that h

E(yIx)=a+px, (D
and
Var(y | x) = o2, (2)

where 0’ = (a, p/, o?). Typical panel data focuses on individual outcomes. Factors
affecting individual outcomes are numerous. It is rare to be able to assume a common
conditional probability density function of y conditional on x for all cross-sectional
units, 7, at all time, ¢. For instance, suppose that in addition to x, individual out-
comes are also affected by unobserved individual abilities (or marginal utility of ini-
tial wealth as in MaCurdy (1981) labor supply model discussed in (ii.b) on Sect. 3),
represented by «;, so that the observed (y;;, x;,), i =1,...,N,t=1,..., T, are ac-
tually generated by

=1, N,

P iy 1y Aw.v

Yie =0 + m\m: + Uiz,
as depicted by Fig. 1 in which the broken-line ellipses represent the point scatter
of individual observations around their respective mean, represented by the broken
straight lines. If an investigator mistakenly were to impose the homogeneity assump-
tion (1), (2), the solid lines in those figures would represent the estimated relation-
ships between y and x, which can be grossly misleading.

If the conditional density of y given x varies across i and over ¢, the fundamental
theorems for statistical inference, the laws of large numbers and central limit theo-
rems, will be difficult to implement. One way to restore homogeneity across ¢ and/or
over ¢ is to add more conditional variables, say z,

FOir | Xip 2i13 8)- )

However, the dimension of z can be large. A model is a simplification of reality,
not a mimic of reality. The inclusion of z may confuse the fundamental relationship
between y and x, in particular, when there is a shortage of degrees of freedom or
multicollinearity, etc. Moreover, z may not be observable. If an investigator is only
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Fig. 1 Scatter diagrams of Y A
(y(, 1), x(i, 1))

y4

y A

interested in the relationship between y and x, one approach to characterize the het-
erogeneity not captured by x is to assume that the parameter vector varies across i and
overt, §;,, so that the conditional density of y given x takes the form f(yir | X;1; 8;)-
However, without a structure being imposed on @;,, such a model only has descriptive
value. It is not possible to draw any inference about §;,.

The methodological literature on panel data is to suggest possible structures on 8;,
(e.g. Hsiao 2003). One way to impose some structure on §;, is to decompose ¢;, into
ﬁm. N:v, where m is the same across i and over ¢, referred to as structural parameters,
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and y ¥ipr , referred to as incidental parameters, because when cross-section units, N,

and/or time series observations, T, increases, so does the dimension of Vi The focus
of panel data literature is to make inference on g after controlling the impact of y, .

Without imposing a structure for y, , again it is difficult to make any inference
on B because estimation of B can depend on ¥;;, and the estimation of the unknown
Vi “will probably exhaust all available sample information. Assuming that the im-
pacts of the observable variables, x, are the same across i and over f, represented by
the structure parameters, f, the _:nao_zm_ parameters, y, , represent the heterogene-
ity across i and over ¢ that are not captured by x;,. They can be considered composed
of the effects of omitted individual time-invariant, ¢;, period individual-invariant, A;,
and individual time-varying variables, 8;,. The individual time-invariant variables are
variables that are the same for a given cross-sectional unit through time but vary
across cross-sectional units such as individual-firm management, ability, gender, and
socio-economic background variables. The period individual-invariant variables are
variables that are the same for all cross-sectional units at a given time but vary through
time such as prices, interest rates, and wide spread optimism or pessimism. The indi-
vidual time-varying variables are variables that vary across cross-sectional units at a
given point in time and also exhibit variations through time such as firm profits, sales
and capital stock. The effects of unobserved heterogeneity can either be assumed as
random variables, referred to as the random effects model, as fixed parameters, re-
ferred to as the fixed effects model, or as a mixture of both, refereed to as the mixed
effects model.

The challenge of panel methodology is to control the impact of unobserved hetero-
geneity, represented by the incidental parameters, y;;, to obtain valid inference on the
structural parameters . A general principle of obtaining valid inference of g in the
presence of incidental parameters Y, isto find proper transformation to eliminate W
from the specification or to Eamm_.mﬂa out the effects of y, . Since proper e.mzmmoz.:m-
tions depend on the model one is interested, as illustrations, I shall try to demonstrate
the fundamental issues from the perspective of linear static models, dynamic models,
nonlinear models, models with cross-sectional dependencies and models with large
N and large T'.

For ease of exposition, I shall assume, for the most of time, that there are no
time-specific effects, A, and that the individual time-varying effects, é;;, can be rep-
resented by a random variable u;,, that is treated as the error of an equation. In other
words, only individual-specific effects, «;, are present. The individual-specific ef-
fects, «;, can be assumed as either random or fixed. The standard assumption for
the random effects specification is that these effects are randomly distributed with a
common mean and are independent of a fixed x;,.

The advantages of the random effects (RE) specification are: (a) The number of
parameters stays constant when sample size increases. (b) It allows the derivation
of efficient estimators that make use of both within and between (group) variation.
(c) It allows the estimation of the impact of time-invariant <m:.mc_mm The disadvan-
tage is that one has to specify a conditional density of ¢; given x} = (x;1, ..., Xi7)s
f(a; | x;), while a; are unobservable. A common assumption is that f(o; | x;) is
amssom_ to the marginal density f(«;). However, if the effects are correlated s_::
x;, or if there is a fundamental difference among individual units, i.e., conditional on
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Xi;» Yir cannot be viewed as a random draw from a common distribution, common
RE model is misspecified and the resulting estimator is biased.

The advantages of the fixed effects (FE) specification are that it can allow the
individual-and/or time specific effects to be correlated with explanatory variables x;,.
Neither does it require an investigator to model their correlation patterns. The disad-
vantages of the FE specification are: (a’) The number of unknown parameters in-
creases with the number of sample observations. In the case when T (or N for A;)
is finite, it introduces the classical incidental parameter problem (e.g., Neyman and
Scott 1948). (b’) The FE estimator does not allow the estimation of the coefficients
that are time-invariant.

In order words, the advantages of the RE specification are the disadvantages of
the FE specification and the disadvantages of the RE specification are the advantages
of the FE specification. To choose between the two specifications, Hausman (1978)
notes that the FE estimator (or GMM), g, is consistent, whenever ; is fixed or ran-
dom, and the commonly used RE estimator (or GLS), @y, is consistent and efficient
only when o; is indeed uncorrelated with x;, and is inconsistent if ¢; is correlated
with x;,. Therefore, he suggests using the statistic

(8pg — Ore)'[Cov (Opr) — Cov (Brp)] (Ore — OrE) (5)

to test RE vs FE specification. The statistic (5) is asymptotically chi-square distrib-
uted with the degrees of freedom equal to the rank of [Cov(fgg) — Cov(@gp)]-

4.1 Linear static models

A widely used panel data model is to assume that the effects of observed explana-
tory variables, x, are identical across cross-sectional units, i, and over time, 7, while
the effects of oﬂ::nﬁ_ variables can be decomposed into the individual-specific ef-
fects, «;, time-specific effects, A, and individual time-varying effects, 8;; = u;;, as
follows:
Yie = m\m: +a; + Ay + Uiy, (6)

In a single equation framework, individual-time effects, u, are assumed random
and uncorrelated with x, while ; and A, may or may not be correlated with
x. When «; and X, are treated as fixed constants, as coefficients of dummy
explanatory variables, d;; = 1, if the observation corresponds to the ith indi-
vidual at time 7, and O otherwise; whether they are correlated with x is not
an issue. On the other hand, when «; and A, are treated as random, they be-
come part of the error term and are typically assumed to be uncorrelated with
Xig-

For ease of exposition, we shall assume that there are no time-specific effects, i.e.,
A, = 0 for all ¢, and u;, are independent identically distributed (i. T..: across i and
over f. Stacking an individual’s 7' time series observations of (vir, x+,) into a vector
and a matrix, (6) may alternatively be written as

~it

Nmﬂkﬁ.m._.m&.ﬁ.mt i=1,...,N, 7
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where y. = (Vit, ..., 0ir)s Xi = Xins oo Xip)s 4 = = (4i1,...,uir), and ¢ is a
Tx1 vector of 1’s.

Let Q bea T x T matrix satisfying the condition that Q¢ = 0. Multiplying (7) by
Q yields

0y, =0Xif+Qu;, i=l.. N (8)

Equation (8) no longer involves «;. The issue of whether ; is correlated with x;, or
whether «; should be treated as fixed or random is no longer relevant for (8). More-
over, since X; is exogenous, E(QX;u;0") = QE(X;u;)Q" =0 and EQuu.Q =
me QQ'. An efficient estimator of B is the generalized least squares estimator (GLS),

-1

N N
MNXQQ%XM Mkmﬂmamvlmm , 9)

i=1 i=l

where (Q’' Q) denotes the Moore—Penrose generalized inverse (e.g., Rao 1973).

When Q = I — Pmm‘ Q wm idempotent, the Moore—Penrose generalized inverse

of (Q'Q) isjust Q = It — mm itself. Multiplying (8) by Q is equivalent to trans-
forming (6) into a model

ie — ¥i) = B (xiy — i) + (i — i), (10)

where y; = T LSE s = Lyt anduy= +Muw  tjz. This transformation
is called the covariance transformation. The least squares estimator (LS) (or a gen-
eralized least squares estimator (GLS)) of (10),

8., MUM::L;@_T%\ MMF?%@?%. (11)

i=1 t=1 =1 t=1

is called the covariance estimator or within estimator because the estimation of g only
makes use of within (group) variation of y;; and x;,. The covariance estimator of g
turns out to be also the least squares estimator of (10). It is the best linear unbiased
estimator of g if «; is treated as fixed and u;, is i.i.d.

If o; is random, transforming (7) into (8) transforms 7" independent equations (or
observations) into (T — 1) independent equations, hence, the covariance estimator
is not as efficient as the efficient generalized least squares estimator if Ee;xj, =0

When o; is independent of x;, and is independently, identically distributed across i
with mean ) and variance qomt the best linear unbiased estimator (BLUE) of m is GLS,

N -Irw
Yoxivax | | Doxivily | (12)

i=1 i=l
where <\|Qm:1+o‘ ee', V™ _MTﬂlﬂmmu_ Fﬁﬁsll.ﬂ_ﬁmrm

O o2+Taol
is equivalent to first transforming the data by subtracting a fraction (1 — ¢/'/%) of
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individual means y; and x; from their corresponding y;, and x;,, then regressing
yir — (1 — ¥/ y;] on [x;, — (1 — ¥1/2)x;] (for details, see Baltagi 2001; Hsiao
2003).

If a variable is time-invariant, like gender dummy xi;; = Xkis = Xii, the covariance
transformation eliminates the corresponding variable from the specification. Hence,
the coefficients of time-invariant variables cannot be estimated. On the other hand, if
@; is random and uncorrelated with x;, ¥ # 1, the GLS can still estimate the coeffi-

cients of those time-invariant variables.
4.2 Dynamic models

When the regressors of a linear model contains lagged dependent variables, say, of
the form (e.g., Balestra and Nerlove 1966)

Y, =Y, vt XiB+ewi+u;=Zi0+exity;, i=L...N, (13

s_rwa Y. = QE..:Q_.QL%.NE.H @...L.k_.v msamﬂ G\,ma\. mOawmmoOm

notation, we assume that y;p are observable. Technically, we can still eliminate
the individual-specific effects by multiplying (13) by the transformation matrix

Q(Qe=0),
Qy, = 0Zi0 + Qu;. . (14)

However, because of the presence of lagged dependent variables, £EQZ;ju. Q" # 0
even with the assumption that u;, are independent, identically distributed across i and
over ¢. For instance, the covariance transformation matrix Q = I — +mm\ transforms
(13) into the form

. - _ _ e P
ir = ¥ = Qi—t = i)y + Qip — X)) B+ (ie — i), _ (15)
= Nl,—u...u‘w..w

where y; = 7 Y Yies Vi1 = %M”w,n_ Yir—1 and i; = %Muwn_ ui;. Although,
vir—1 and u;; are uncorrelated under the assumption of serial independence of uiy,
the covariance between y; _j and u;;, or between y; ;1 and i; is of order (1/7') if
ly| < 1. Therefore, the covariance estimator of & creates a bias of order (1/7), when
N—00 (Anderson and Hsiao 1981, 1982; Nickell 1981). Since most panel data con-
tain large N but small 7, the magnitude of the bias can not be ignored (e.g., with
T = 10 and y = 0.5, the asymptotic bias is —0.167).

When EQZ;u! Q' # 0, one way to obtain a consistent estimator for ¢ is to find
instruments W; that satisfy

EW;u. Q' =0, (16)
and
HNDWAS\EQNMVH\A, :\U

where k denotes the dimension of (y, f')’, then apply the generalized instrumental
variable or generalized method of moments estimator (GMM) by minimizing the
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objective function

b~

N TN -Ir N
N WiQy, — 0Zi9) | | Y WiQuui@'W/| | Wi(Qy,—0Z;0)| (18)

i=1 i=1 i=l

with respect to @ (e.g., Arellano 2003; Ahn and Schmidt 1995; Arellano and Bond
1991; Arellano and Bover 1995). For instance, one may let Q be a (T — 1) x T matrix
of the form

D= . . (19)

then the transformation (14) is equivalent to taking the first difference of (13) over
time to eliminate o;; fort =2,..., T,

Bi=L e N
Ayir = Ayi -1y + Dmm“m + Auir, t=2 T

(20)
where A = (1 — L) and L denotes the lag operator, Ly, = y,—1. Since Auj; =
(ui; — uj 1) is uncorrelated with y;,—;, for j > 2, and with x;,, for all 5, when
u;; is independently distributed over time and x;, is exogenous, one can let W; be a
T(T — DK + 1]1x(T — 1) matrix of the form

(21)

A~

where g, = (yio. yi1, e Yig—2. %), x; = (X}, ..., x;p) ,and K =k — 1. Under the

mmmsB_waoz that ( wm, x) are independent, identically distributed across i, the Arellano
and Bover (1995) GMM estimator takes the form
=

N N “Irw
Oasovm = || D ZD'W/ || D WiAw! | | > WiDZi

i=l i=l i=l

N N -Ir N
<13 zip'w! || Y wiaw]| | WDy, |1 (@2

=1 i=1 i=l

where A is a (T — 1)x(T — 1) matrix with 2 on the diagonal elements, —1 on the
elements right above and below the diagonal elements and 0 elsewhere.

The GMM estimator has the advantage that it is consistent and asymptotically
normally distributed whether o; is treated as fixed or random because it eliminates
o; from the specification. However, the number of moment conditions increases at
the order of 72 which can create severe downward bias in a finite sample (Zil-
iak 1997). An alternative is to use a (quasi-)likelihood approach which has the ad-
vantage of having a fixed number of orthogonality conditions independent of the
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sample size. It also has the advantage of making use of all the available sam-
ple, hence, may yield a more efficient estimator than (22) (e.g., Hsiao et al. 2002;
Binder et al. 2005). However, the likelihood approach has to include the specification
of the joint likelihood function of (yio, yi1. .-, yir) (or the conditional likelihood
function (yi1, ..., yiT | ¥io))- Since there is no reason to assume that the data gener-
ating process of initial observations, y;o, is different from the rest of y;;, the initial
vio depends on previous values of x; _; and @; which are unavailable. Bhargava and
Sargan (1983) suggest to circumvent this missing data problem by conditioning yio
on x; and ¢; if o; is treated as random. If «; is treated as a fixed constant, Hsiao ct al.

(2002) proposes conditioning (i1 — yio) on the first difference of x;.
4.3 Nonlinear models

When the unobserved individual specific effects, «; (and/or time-specific effects, A;)
linearly affect the outcome, y;;, one can avoid the consideration of random versus
fixed effects specification by eliminating them from the specification through some
linear transformation such as the covariance transformation (8) or the first differ-
ence transformation (20). However, if «; affects y;; nonlinearly, it is not easy to find
a transformation that can eliminate ;. For instance, consider the following binary
choice model where the observed y;, takes the value of 1 or 0, depending on the
latent response function

v = m\m: + i + i, (23)
and

1, ify}>0,

where u;, are independent, identically distributed with the density function f (u;,).
Let

Yir = E(yir _m_,_: o) + €ir, (25)

then
o0

mQ:_m:,Sv u\ izv%nT\me‘m:lS;. ﬁe
I@\.m.: +a;)

Since «; affects E (yi¢ | x;;, o) nonlinearly, o; remains after taking successive differ-

ence of yi;,

Yit = Yig—1= T — m...ﬁlm\m: LQD“_ 7 T . ﬁﬁlm\mfl_ \R.L._-ﬁm: —€i—1)- (27)

The likelihood function, conditional on x; and «;, takes the form
1 =i Vit
a1 [F(=fxi — )] 7 [1 = F(—'xi —e)]™. (28)

If T is large, consistent estimators of B and «; can be obtained by maximizing (28).
If T is finite, there is only limited information about o; no matter how large is N.
The presence of incidental parameters, «;, violates the regularity conditions for the
consistency of the maximum likelihood estimator of m
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If f (i | x;) is known and is characterized by a fixed dimensional parameter vec-
tor, a consistent estimator of B can be obtained by maximizing the marginal likeli-
hood function

mY \.nﬁ;flm\m:lgm_.,sT — F(=B'xi —a)]" f @i | x;) dei. (29)

However, maximizing (29) involves 7 -dimensional integration. Butler and Moffitt
(1982); Chamberlain (1984); Heckman (1981), etc., have suggested methods to sim-
plify the computation.

The advantage of the RE specification is that there is no incidental parameter prob-
lem. The problem is that f(e; | x;) is, in general, unknown. If a wrong f(e; | X;) is
postulated, maximizing the wrong likelihood function will not yield a consistent es-
timator of . Moreover, the derivation of the marginal likelihood through multiple
integration may be computationally infeasible. The advantage of the FE specification
is that there is no need to specify f(; | x;)- The likelihood function will be the prod-
uct of individual likelihood (e.g., (28)) if the errors are i.i.d. The disadvantage is that
it introduces incidental parameters.

A general approach of estimating a model involving incidental parameters is to
find transformations of the original model into a model that does not involve inciden-
tal parameters. Unfortunately, there is no general rule available for nonlinear models.
One has to explore the specific structure of a nonlinear model to find such a transfor-
mation. For instance, if f () in (23) is logistic, then

Prob(y;; =1 x;,,0) = T (30)

Since, in a logit model, the denominators of Prob(y;; = 1| x;,, ;) and Prob(yi; =
0| x;,, ;) are identical, and the numerator of any sequence {¥it,--.,yir} with
Mwu_ vi; =s is always equal to exp(a;s) ‘mxiM“wn_ Am\m:vw: w the conditional like-

lihood function, conditional on M“wu_ yir = s, will not involve the incidental parame-
ters «; . For instance, consider the simple case that 7 = 2, then

Bl 1 3
Prob(y;; = e : 2 = = = y 1
rob(yiy L,yio=0]|yi1 +yi2 1) mm.m\:+mmam...m —n_ummxbxe_.m (31)
and
NN\DM\G
Prob(yi1 =0,y2=1|yi1+yn=1= — (32)
1 + e£ 220

(Chamberlain 1980; Hsiao 2003).

This approach works because of the logit structure. In the case when f(u) is un-
known, Manski (1987) exploits the latent linear structure of (23) by noting that for a
given i,

AllV

=
BriZ 8% = EQulxina) 2 EQi1 g0, (33)
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and suggests maximizing the objective function

Hy (b) = MM sen(b/ Axi ) Avir, | (34)

_|~ t=2

where sgn(w) = 1 if w > 0, sgn(w) =0 if w =0, and sgn(w) = —1 if w < 0. The
advantage of the Manski (1987) maximum score estimator is that it is consistent
without the knowledge of f (u). The disadvantage is that (33) holds for any ¢ where
‘¢ > 0. Only the relative magnitude of the coefficients can be estimated with some
normalization rule, say || 8 |= 1. Moreover, the speed of convergence is considerably

slower (V1/3) and the limiting distribution is quite complicated. Horowitz (1992) and
Lee (1999) have proposed modified estimators that improve the speed of convergence
and are asymptotically normally distributed.

Other examples of exploiting specific structure of nonlinear models to elimi-
nate the effects of incidental parameters o; include dynamic discrete choice models
(Chamberlain 1993; Honoré and Kyriazidou 2000; Hsiao et al. 2006), symmetrically
trimmed least squares estimator for truncated and censored data (Tobit models) (Hon-
oré 1992), sample selection models (or type II Tobit models) (Kyriazidou 1997), etc.
However, they often impose very severe restrictions on the data such that not much
information of the data can be utilized to obtain parameter estimates. Moreover, there
are models such that they do not appear to possess consistent estimators when T is
finite. .

An alternative to consistent estimators is to consider bias reduced estimators. The
advantage of such an approach is that the bias reduced estimators may still allow the
use of all the sample information so that, from a mean square error point of view,
the bias reduced estimator may still dominate consistent estimators because the latter
often have to throw away a lot from a sample, thus, tending to have large variances.

Following an idea of Cox and Reid (1987), Arellano (2001) and Carro (2005) pro-
pose deriving the modified MLE by maximizing the modified log-likelihood function

L aTMa (B.4:(B) — 5 _oi:: (8.4:(B)), (35)

~

i=l1

where £} ﬁ a; Amvv denotes the concentrated log-likelihood function of Y; after sub-

stituting the MLE of «; in terms of m Q; va (i.e., the solution of L%% 0 in terms

of m i=1,...,N), into the log- -likelihood function, and mﬁ aio ﬁ_m Rﬁm: denotes
the second derivative of £ with respect to o;. The bias correction term is derived
by noting that, up to the order of (1/T), the first derivative of £} with respect to B
converges to Pi. By subtracting the order (1/T) bias from the likeli-
hood function, the modified MLE is biased only up to the order of (1/ T2), without
increasing the asymptotic variance.

Monte Carlo experiments conducted by Carro (2005) have shown that, when
T = 8, the bias of modified MLEs for dynamic probit and logit models are negligible.
Another advantage of the Arellano—Carro approach is its generality. For instance, a
dynamic logit model with time dummy explanatory variable can not meet the Honoré
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and Kyriazidou (2000) conditions for generating consistent estimator but can still be
estimated by the modified MLE with good finite sample properties.

4.4 Modeling cross-sectional dependence

Most panel studies assume that apart from the possible presence of individual invari-
ant but period varying time specific effects, A, the effects of omitted variables are in-
dependently distributed across cross-sectional units. However, economic theory often
predicts that agents take actions leading to interdependence among themselves. For
example, the prediction that risk averse agents will make insurance contracts allow-
ing them to smooth idiosyncratic shocks implies dependence in consumption across
individuals. Ignoring cross-sectional dependence can lead to inconsistent estimators,
in particular, when T is finite (e.g., Hsiao and Tahmiscioglu 2005). Unfortunately,
contrary to the time series data in which the time label gives a natural ordering and
structure, general forms of dependence for cross-sectional dimension are difficult
to formulate. Therefore, econometricians have relied on strong parametric assump-
tions to model cross-sectional dependence. Two approaches have been proposed to
model cross-sectional dependence: economic distance or spatial approach and factor
approach.

In regional science correlation across cross-section units is assumed to follow
a certain spatial ordering, i.c., dependence among cross-sectional units is related
to location and distance, in a geographic or more general economic or social net-
work space (e.g., Anselin 1988; Anselin and Griffith 1988; Anselin et al. 2006).
A known spatial weights matrix, W = (w;;), an N x N positive matrix in which the
rows and columns correspond to the cross-sectional units, is specified to express the
prior strength of the interaction between individual (location) i (in the row of the
matrix) and individual (location) j (column), w;;. By convention, the diagonal el-
ements, w;; = 0. The weights are often standardized so that the sum of each row,
MUHZL wij = 1.

The spatial weight matrix, W, is often included into a model specification of the
dependent variable, of the explanatory variables, or of the error term. For instance,
a spatial lag model for the NT x 1 variable y = @_T:QZV = Vi1, ---» iT) s
may take the form

=p(W®Ir)y +XB +u, (36)

where X and u denote the NT x K explanatory variables and N7 x1 vector of error
terms, respectively, and ® denotes the Kronecker product. A spatial error model may
take the form

y=Xg+u, (37)
where v may be specified as a spatial autoregressive form,
v=0W®Ir)y +u, (38)
or as a spatial moving average form,

v=y(W & Ir)u +u. (39)
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The spatial model can be estimated by the instrumental variables (generalized
method of moments estimator) or the maximum likelihood method. However, the
approach of defining cross-sectional dependence in terms of “economic distance”
measure requires that the econometricians have information regarding this “economic
distance” (e.g., Conley 1999). Another approach to model cross-sectional dependence
is to assume that the error of a model, say, model (37) follows a linear factor model

r
Vit HMU_@:.? + Uiy, (40)

j=1

where \. = (fir,...» fr1) is arx1 vector of random factors, b; = (b;1, ..., bir) isa
rxl =oE.§aoE factor loading coefficients, u;, represents the om,mﬁm of idiosyncratic
shocks which is independent of f andis independently distributed across i (e.g., Bai
and Ng 2002; Moon and Perron 2004; Pesaran 2004). The conventional time-specific
effects model is a special case of (40) when r = 1 and b; = by for all i and £.

The factor approach requires considerably less prior information than the eco-
nomic distance approach. Moreover, the number of time-varying factors, r, and fac-
tor loading matrix B = (b;;) can be empirically identified if both N and T are large.
The estimation of a factor loading matrix when N is large may not be computation-
m:z mnmm_c_o Pesaran @oo& has, therefore, suggested to add cross-sectional means

Ji=x Y Vips Xy = 2 >N | x;, as additional regressors with individual-specific
coefficients to (37) to filter out cross-sectional dependence. This approach is very ap-
pealing because of its simplicity. However, it is not clear how it will perform if N
is neither small nor large. Neither is it clear how it can be generalized to nonlinear
models.

4.5 Large-N and large-T panels

Our discussion has been mostly focusing on panels with large N and finite 7. There
are panel data sets, like the Penn—World tables, covering different individuals, in-
dustries, and countries over long periods. In general, if an estimator is consistent in
the fixed-T, large-N case, it will remain consistent if both N and T tend to infinity.
Moreover, even in the case when an estimator is inconsistent for fixed T and large N
(say, the MLE of dynamic model (13) or fixed effects probit or logit models (26)), it
can become consistent if T also tends to infinity. The probability limit of an estima-
tor, in general, is identical irrespective of how N and T tend to infinity. However, the
properly scaled limiting distribution may depend on how the two indexes, N and T,
tend to infinity.
There are several approaches for deriving the limits of large-N, large-T panels:

(a) Sequential limits—first, fix one index, say N, and allow the other, say T, to go to
infinity, giving an intermediate limit, then let N go to infinity.

(b) Diagonal-path limits—let the two indexes, N and T, pass to infinity along a
specific diagonal path, say T =T (N), as N —> <.

(¢) Joint limits—let N and T pass to infinity simultaneously without placing specific
diagonal path restrictions on the divergence.
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In many applications sequential limits are easy to derive. However, sometimes se-
quential limits can give misleading asymptotic results. A joint limit will give a more
robust result than either a sequential limit or a diagonal-path limit, but will also be
substantially more difficult to derive and will be applicable only under stronger con-
ditions, such as the existence of higher moments. Phillips and Moon (1999) have
given a set of sufficient conditions that ensures that sequential limits are equivalent
to joint limits.

When T is large, there is a need to consider serial correlations more generally,
including both short-memory and persistent components. For instance, if unit roots
are present in y and x (i.e., both are integrated of order 1) but are not cointegrated,
Phillips and Moon (1999) show that, if NV is fixed but T — o0, the least squares re-
gression of y on x is a nondegenerate random variables that is a functional of Brown-
ian motion that does not converge to the long-run average relation between y and x,
but it does if N also tends to infinity. In other words, the issue of spurious regression
will not arise in a panel with large N (e.g., Kao 1999).

Both theoretical and applied researchers have paid a great deal of attention to unit
root and cointegration properties of variables. When N is finite and T is large, stan-
dard time series techniques can be used to derive the statistical properties of panel
data estimators. When N is large and cross-sectional units are independently distrib-
uted across i, central limit theorems can be invoked along the cross-sectional dimen-
sion. Asymptotically normal estimators and test statistics (with suitable adjustment
for finite T bias) for unit roots and cointegration have been proposed (e.g., Baltagi
and Kao 2000; Im et al. 2003; Levin et al. 2002). They, in general, gain statistical
power over their standard time series counterparts (e.g., Choi 2001).

When both N and T are large and cross-sectional units are not independent, a fac-
tor analytic framework of the form (40) has been proposed to model cross-sectional
dependency and variants of unit root tests are proposed (e.g., Moon and Perron 2004).
However, the _EEoEmEm:o: of those panel unit root tests is o::m noE_u__nEna
When N — oo and 5 MUT_ =: — 0, (40) implies that v; = w f,» where _v
the cross-sectional average of b. = (b1, ..., b;r) and ,w — Q:,.:F?v. wmmmnms
(2004, 2005) suggests a simple muvnownr to filter out the nmom.m-mnncosm_ dependency
by augmenting the cross-sectional means ¥; and X, to the regression model (37), i.e.,

Yir = Xi B + @i + Fici + X;di + eir, (41)

or y;, Ay,—j to the Dickey and Fuller (1979) type regression model, i.e.,

i Pi
Ayis =i + 8t + Vivia-1 + 9 GieDAyii—e +ciFi1 + Y dieAfi—¢ +eir, (42)

for testing of unit root, where y; = % MW_ Yit» Xp = M“T_ Xip» AYi—j =
% szn_ Ayii—j» A=(1— L), and L denotes the lag operator. The resulting pooled
estimator will again be asymptotically normally distributed.

When cross-sectional dependency is of unknown form, Chang (2002) suggests
using nonlinear transformations F(y; 1) of the lagged level variable y; ,—1 as in-
struments (IV) for the usual augmented Dickey and Fuller (1979) type regression.
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The test static for the unit root hypothesis is simply defined as a standardized sum
of individual IV ¢-ratios. As long as F(-) is regularly integrable, say F(yi;—1) =
yir eVl where ¢; is a positive constant, the products of the nonlinear in-
struments F(y;,—1) and F(y;,—1) from different cross-sectional units i and j are
asymptotically uncorrelated, even if the variables y;,—1 and y;,1, generating the
instruments, are correlated. Hence, the usual central limit theorems can be invoked
and the standardized sum of individual IV ¢-ratios is asymptotically normally distrib-
uted.

For further review of the literature on unit roots and cointegration in panels, see
Breitung and Pesaran (2006) and Choi (2006). However, a more fundamental issue
of panel modeling with large N and large 7 is whether the standard approach of
formulating unobserved heterogeneity for the data with finite 7 remains a good ap-
proximation to the true data generating process with large T.

5 Concluding remarks

In this paper we have tried to provide a summary of advantages of using panel
data and the fundamental issues of panel data analysis. Assuming that the het-
erogeneity across cross-sectional units and over time that is not captured by the
observed variables can be captured by period-invariant individual specific and/or
individual-invariant time specific effects, we surveyed the fundamental methods for
the analysis of linear static and dynamic models. We have also discussed difficulties
of analyzing nonlinear models and modeling cross-sectional dependence. There are
many important issues such as modeling of joint dependence, simultaneous equa-
tions models, varying parameter models (e.g., Hsiao 1992, 2003; Hsiao and Pesaran
2006), unbalanced panel, measurement errors (e.g., Griliches and Hausman 1986;
Wansbeek and Koning 1989), nonparametric or semiparametric approach, repeated
cross-section data, etc., that are not discussed here but are of no less importance.

Although panel data offer many advantages, they are not panacea. The power of
panel data to isolate the effects of specific actions, treatments or more general policies
depends critically on the compatibility of the assumptions of statistical tools with the
data generating process. In choosing a proper method for exploiting the richness and
unique properties of the panel, it might be helpful to keep the following factors in
mind. First, what advantages do panel data offer us in investigating economic issues
over data sets consisting of a single cross section or time series? Second, what are the
limitations of panel data and the econometric methods that have been proposed for
analyzing such data? Third, what are the assumptions underlying the statistical infer-
ence procedures and are they compatible with the data-generating process? Fourth,
when using panel data, how can we increase the efficiency of parameter estimates and
reliability of statistical inference?
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