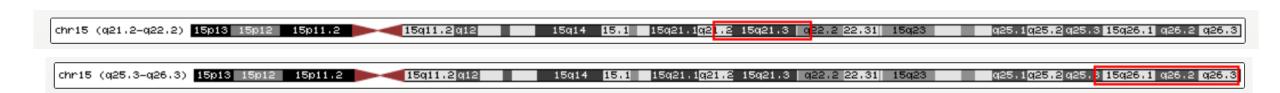
マイクロアレイ染色体検査普及のための産学連携コンソーシアム主催マイクロアレイ染色体検査解釈ハンズオンウェビナー 2023.9.19

マイクロアレイ染色体検査解釈ハンズオンウェビナー


中級編解說資料症例3

静岡県立こども病院 清水健司

症例 3 ←

1歳男児:発達遅滞、体重増加不良、有意な CNV なし←

【ROH2】chr15: 88,360,668-102,398,213 15q25.3q26.3←

症例3 参加者解答(計7名)とポイント

- PWS/ASの想起(<u>4/7</u>)
- ROH発生メカニズムとしての15番染色体全体のUPD想起(<u>2/7</u>)
- ROHがインプリンティング領域から外れていることの関連説明(<u>1/7</u>)

ROH評価で最も伝えたいこと

ROH(有意なホモ接合性領域)は現象

- ①ROH評価は<u>直接的な病原性評価ではない(臨床的報告対象か否か</u>)
- ②ROHの<u>分布とサイズ</u>から<u>発生機序と臨床的影響</u>の推測
- ③確定のための追加検査が必要

UPDとIBD (同一祖先由来:血縁) を想起する報告基準あり

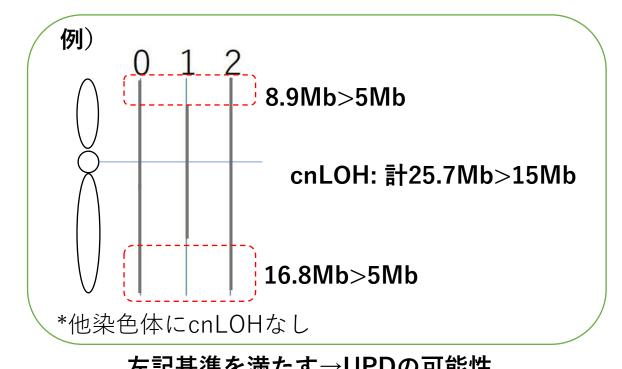
ROH→UPD判断の基準

• 単一の染色体に存在

- *UPDの1/3はcomplete hetero UPD この場合ROHを認めないUPD *ROHはUPDすべてを拾い上げる現象ではない
- ・血縁ないコントロール集団では<3Mb程度のROHは一般的だが 3-5Mb超えるROHの頻度は少ない
- UPD集団でのROHの平均サイズは、端部11.0Mb/中間部24.1Mb

Genet Med. 2018 Dec;20(12):1522-1527

UPDを示唆するROH報告基準例 基本は**単一染色体に存在するlarge ROH**


単一のROH基準

- ・端部ROHカットオフ:5Mb以上 (染色体番号に関わらず)
- ・中間部ROHカットオフ

-インプリンティング+染色体:**10Mb**以上 -インプリンティング-染色体:**15Mb**以上

同一染色体のROH合計:15Mb以上

Genet Med(2022)24:255-61 Genet Med(2018) 20:1522-1527

左記基準を満たす→UPDの可能性

染色体全体中での<u>分布とサイズと割合をチェックする</u>

- ・**Distribution**: 単一染色体・中間部/端部の2箇所(15q21.2-q22.2/15q25.3-q26.3)
- Size:中間部9.41Mb+端部14.0Mb=23.41Mb
- Ratio of cnLOH to whole chromosome: 22.8% (chr15 total length 102.5Mb)

臨床的報告基準

①UPDを示唆するcnLOH報告基準

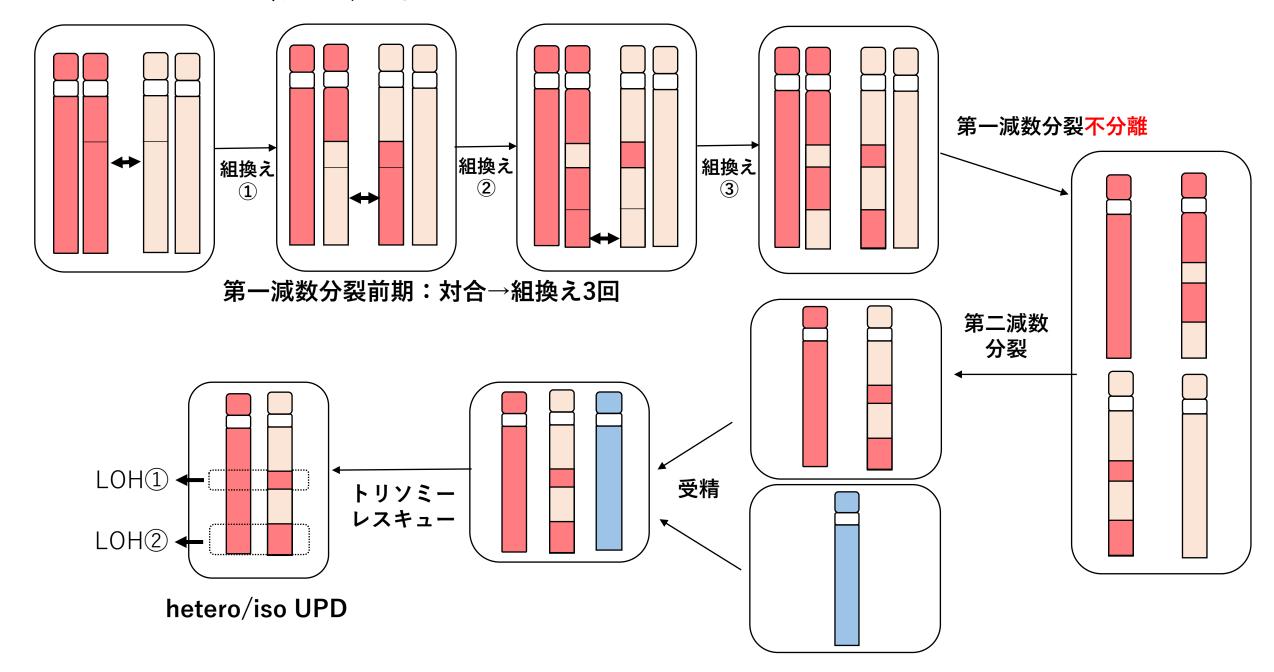
基本は単一染色体に存在するlarge cnLOH

単一のcnLOH基準

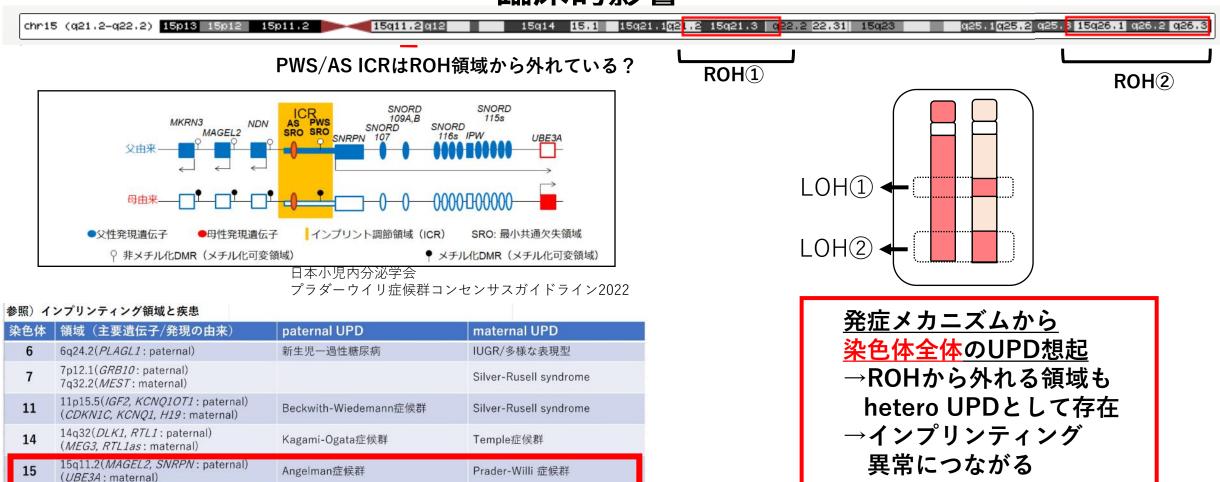
★端部cnLOHカットオフ:5Mb以上

(染色体番号に関わらず)

- ・中間部cnLOHカットオフ
 - -インプリンティング+染色体: 10Mb以上 -インプリンティング-染色体: 15Mb以上
- ★同一染色体のcnLOH合計:<u>15Mb</u>以上


②IBD(近親/血縁関係)を示唆するcnLOH報告基準

- * 複数染色体にわたる複数個所の(3-)5Mb以上のcnLOH 合計cnLOH: 常染色体ゲノムサイズ(2881Mb) の2-3%以上[約60-80Mb]
- * 常染色体ゲノムサイズの10%以上で2度近親の可能性大 →ELSIへの留意


Genet Med(2022)24:255-61

Genet Med(2018) 20:1522-1527

(参考) 推測されるUPD発生メカニズム

臨床的影響

→ 母由来/父由来かで診断異なる→追加解析 (+追加臨床評価)

偽性副甲状腺機能低下症(type1B)

20g13.22 (XLas, A/B: paternal)

(* GNAS: maternal(組織特異的)

20

臨床症状からPWS/ASを明確に区別困難 トリソミーレスキューでの発症が想定されることを考えると、不分離は卵由来が多いため →maternal UPD→PWSの可能性が高い

Mulchandani-Bhoj-Conlin症候群

医学的に推奨される方法-1

MS-MLPAが第1選択の検査として推奨される。この解析は、施設基準を満たした保険医療機関がPWSの診断を目的として登録衛生検査所(現時点では国立成育医療研究センターのみ)に遺伝学的検査を委託した場合に保険請求可能である。正常核型のPWS患者を対象とする診断フローチャートを示す。

Prader-Willi症候群様表現型 【MS-MLPA解析】 メチル化パターン 高メチル化(PWS確定) 正常メチル化 欠失バターン 欠失バターン SNORD116周辺のみの微細欠失 欠失なし PWS確定 PWS否定的 Type 1欠失 非典型的欠失 PWS-IC 周辺のみ Type 2欠失 なし (様々) の微細欠失 非欠失型 (~ 6.0 Mb) $(\sim 5.3 \text{ Mb})$ 【マイクロサテライト解析など】 母性ダインミー 両親性 エビ変異 トリンミーレスキュー・配偶子補填 モノソミーレスキュー・受精後エラ

追加解析

保険適用 FISH/メチル化PCR 施設基準なし

> MS-MLPA 施設基準満たした 保険医療機関 (受託は成育医療センター)

参照: http://jspe.umin.jp/medical/files/guide20221223.pdf

日本小児内分泌学会

プラダーウイリ症候群コンセンサスガイドライン改訂

版:2022.12.23

ROH評価まとめ

arr[GRCh37] 15q21.2q22.2(51,143,192_60,555,270)x2 hmz, 15q25.3q26.3(88,360,668_102,398,213)x2 hmz

分布	単一染色体(chr15)、中間部と端部、2箇所
サイズ/割合	23.41Mb /22.8%
報告対象の有無	有:UPDを疑う報告基準に該当
推測される発生メカニズム	第一減数分裂時の3回の組換えと不分離に続く トリソミーレスキュー(or 配偶子補填)によるiso/heteroUPD
臨床的影響	Prader-Willi症候群 or Angelman症候群の疑い
追加臨床検査	MS-MLPA法 メチル化PCR

追加臨床評価は必須

(チューブ栄養の有無、けいれん、脳波異常の有無、眼瞼裂、下顎角、口角など顔貌所見、手の大きさ)

PWSにおけるmaternal UPD分類

Eur J Hum Genet (2015) 23, 663-671 PMID: 25118026

PWS maternal disomy 15 n=185 (36%)		
Maternal disomy 15	n	Percentage
Total isodisomy	13	12.5
Segmental isodisomy	60	57.7
Heterodisomy	31	29.8
Not established [†]	81	_

PWSにおけるUPDの60%弱は hetero/iso disomy(segmental isodisomy)

約30%はcomplete heterodisomy ⇒cnLOHとして検出不能

15番染色体ROHサイズ別の臨床的影響

J Med Genet (2019) 56, 149-153 PMID: 29730598

Cases with ROH arising from chromosome 15		
UPD15	Size of ROH	Methylation study
1	Whole	PWS positive
2	Whole	PWS positive
3	Whole	AS positive
4	Whole	AS positive
5	Whole	AS positive
6	Whole	AS positive
7	Whole	AS positive
8	47	PWS positive
9	31	PWS positive
10	13	PWS positive
11	16	PWS positive
12	44	AS positive
13	16	Negative for PWS or AS
14	32	Not confirmed
15	20	Not confirmed
Present case	23.41(Mb)	PWS/AS?

同じサイズでも臨床的影響が異なる場合もあり 確認検査は必須!

症例3の注目要素

診断と追加検査	
インプリンティング	ゲ疾患:MS-MLPA
(UPD:*トリオ多	型解析)
AR疾患同定:*網羅	醒的解析(パネル解析)
染色体数的異常モ	ザイク:G-band>50細胞/metaphase FISH
Pitfall	
表現型からのイン:	プリンティング疾患親由来推定
表現型からのAR疾	患推定とその困難性
ROH領域とインプ	リンティング領域との関連
近親婚の考え方	
UPDの発症機序に	からむ
トリソミーモザイク	ク/モノソミーモザイクの表現型への影響
インプリンティング	ゲ疾患+AR疾患の重複診断の可能性想起
ロバートソン転座な	や過剰マーカー染色体からUPD発症