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Abstract 23 

We aimed to develop regression models for estimating oxygen consumption (VO₂, 24 

ml·kg⁻¹·min⁻¹) during treadmill walking based on accelerations of the upper and lower 25 

limbs and walking velocity, quantitatively assess the contribution of each sensor 26 

location, and validate the accuracy and practicality of a simplified model. 27 

Eighteen healthy adults with regular exercise habits (nine men, nine women) 28 

participated in treadmill walking trials at varying speeds (3–6 km·h⁻¹; up to 5.5 km·h⁻¹ 29 

for women). Vector magnitude (VM) from triaxial accelerometers attached to both 30 

wrists and both ankles was recorded simultaneously with VO₂ measurements from a 31 

portable breath-by-breath gas analyzer. Multiple regression models were constructed 32 

using FootVM (ankle VM), HandVM (wrist VM), and walking velocity as predictors. 33 

FootVM alone showed a moderate correlation with VO₂ (R² = 0.464), but adding 34 

walking velocity substantially improved the model’s accuracy (Model 2: R² = 0.810, 35 

standard error of estimate = 1.25 ml·kg⁻¹·min⁻¹). Incorporating HandVM yielded only a 36 

minimal, non-significant model fit improvement (R² = 0.815, ΔAIC = +18.4, βstd = 37 

−0.06), with no meaningful statistical contribution. Bland–Altman analysis indicated 38 

95% limits of agreement for estimation error within ±2.46 ml·kg⁻¹·min⁻¹, corresponding 39 



 

 

to < 1 MET (3.5 ml·kg⁻¹·min⁻¹). These findings support the rational selection of a 40 

simplified model using only FootVM and walking velocity, which achieved a balance 41 

between high accuracy and practicality. The ability to estimate VO₂ precisely using only 42 

ankle-mounted accelerometers highlights its potential for use in clinical and home-based 43 

physical activity assessment. 44 

 45 
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足関節加速度と歩行速度に基づくトレッドミル歩行中の酸素消費量の簡易推定 49 
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抄録 64 

本研究では、トレッドミル歩行中の酸素摂取量（VO₂、ml·kg⁻¹·min⁻¹）を、上下肢の加65 

速度および歩行速度に基づいて推定する回帰モデルを開発し、各センサー位置の寄与を66 

定量的に評価するとともに、簡素化モデルの精度と実用性を検証することを目的とした。 67 

定期的に運動習慣のある健常成人 18名（男性 9名、女性 9名）が参加し、3～6 68 

km/h（女性は最大 5.5 km/h）の異なる速度でトレッドミル歩行試験を実施した。両手関69 

節および両足関節に装着した 3軸加速度計から得られるベクトルマグニチュード（VM）70 

と、携帯型呼気ガス分析装置による VO₂測定を同時に記録した。FootVM（両足関節の71 

VM合計値）、HandVM（両手関節の VM合計値）、歩行速度を説明変数として、72 

複数の回帰モデルを構築した。 73 

FootVM単独では VO₂と中等度の相関（R² = 0.464）を示したが、歩行速度を加えるこ74 

とでモデルの精度は大幅に向上した（モデル 2︓R² = 0.810、推定標準誤差 = 1.25 75 

ml·kg⁻¹·min⁻¹）。HandVM を追加してもモデル適合度の改善はごくわずかで統計的にも76 

有意ではなかった（R² = 0.815、ΔAIC = +18.4、β標準化係数 = −0.06）。Bland–77 

Altman解析では、推定誤差の 95%限界が±2.46 ml·kg⁻¹·min⁻¹の範囲にあり、1 MET78 

（3.5 ml·kg⁻¹·min⁻¹）未満であった。 79 

これらの結果から、FootVM と歩行速度のみを用いた簡素なモデルの合理的選択が支持さ80 



 

 

れ、高精度と実用性のバランスを実現していることが示された。足関節装着型加速度計の81 

みで VO₂を高精度に推定できることは、臨床や在宅における身体活動評価への応用可能82 

性を示唆している。 83 

 84 



1 

 

Introduction 85 

Estimating oxygen consumption (VO₂) and energy expenditure during walking is 86 

crucial in fields such as rehabilitation, sports medicine, and the assessment of daily 87 

physical activity1). In recent years, the development of wearable devices has led to 88 

growing interest in non-invasive and simple estimation methods using accelerometers2). 89 

Among these, vector magnitude (VM) derived from triaxial acceleration has been 90 

widely used as an indicator of physical activity intensity3,4). 91 

Previous studies have primarily focused on estimating energy expenditure using 92 

accelerometers worn on the waist or thigh4-6). However, VM characteristics vary 93 

significantly depending on sensor placement. Wrist-worn sensors, in particular, are 94 

susceptible to variation in arm swing and inter-individual differences, potentially 95 

capturing movements not directly related to propulsion during walking, and thereby 96 

reducing prediction accuracy7,8). To address these limitations, some studies have 97 

proposed models incorporating multiple sensor placements or additional physiological 98 

indices such as heart rate9,10). However, these approaches often require multiple devices 99 

and complex data processing, limiting their practicality for clinical and daily use. 100 

Therefore, a more practical approach may lie in identifying sensor placements that offer 101 
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both predictive accuracy and simplicity. The ankle, which more directly reflects 102 

locomotor activity, has been suggested as a promising site for measuring walking-103 

related acceleration. Yet, few studies have systematically compared the contributions of 104 

upper and lower limb accelerometry to VO₂ estimation. 105 

This study aimed to develop regression models for estimating oxygen consumption 106 

during walking using accelerometer-derived VM data from both the upper and lower 107 

limbs, along with walking velocity, and to identify a simplified model that balances 108 

accuracy and ease of implementation. 109 

 110 

Materials and Methods 111 

Participants 112 

Eighteen healthy adults with regular exercise habits (nine men and nine women, aged 113 

20–50 years) were recruited. Written informed consent was obtained from all 114 

participants. The study was approved by the Ethics Committee of Kyoto Tanabe 115 

Memorial Hospital (Approval No.: RBMR-220414) and conducted in accordance with 116 

the principles of the Declaration of Helsinki. 117 

 118 
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Protocol  119 

Each participant performed treadmill walking at four different speeds: 3, 4, 5, and 6 120 

km·h⁻¹ (up to 5.5 km·h⁻¹ for women). Each walking trial lasted 3 min, with data from 121 

the final min used for analysis. 122 

 123 

Devices 124 

Physical activity was measured using triaxial accelerometers (ActiGraph GT3X, 125 

ActiGraph LLC, USA), attached with Velcro straps to both wrists and both ankles (four 126 

sites). VO2 was measured in real time using a portable breath-by-breath gas analyzer 127 

(Aeromonitor AE-310S, Minato Medical Science, Japan). The average VO₂ 128 

(ml·kg⁻¹·min⁻¹) over the final min of each walking condition was calculated. 129 

 130 

Signal Processing 131 

Raw acceleration data (30 Hz) were processed using ActiLife software (ver. 6.13.4, 132 

ActiGraph LLC). VM was calculated after applying a normal filter (0.25–2.5 Hz) using 133 

the following formula11) : 134 

VM = √(X² + Y² + Z²) 135 
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The resulting counts are dimensionless values derived from ActiGraph’s proprietary 136 

algorithm and are widely used as indicators of physical activity intensity4). In this study, 137 

the sum of VM from the right and left ankles was defined as FootVM, and the sum from 138 

both wrists as HandVM, expressed in counts·10⁻¹ s. 139 

 140 

Model Construction 141 

We aimed to develop a simple and accurate regression model to estimate VO₂ 142 

(ml·kg⁻¹·min⁻¹) based on accelerometer data. First, a comprehensive full model (Model 143 

3) was developed using both upper and lower limb accelerometry data plus walking 144 

velocity, and the contribution and predictive performance of each variable were 145 

assessed. 146 

The following four regression models were constructed and compared for predictive 147 

accuracy: 148 

1. Model 0: VO₂ ~ velocity (univariable model using velocity only) 149 

2. Model 1: VO₂ ~ FootVM (univariable model using FootVM only) 150 

3. Model 2: VO₂ ~ FootVM + velocity (two-variable model) 151 

4. Model 3: VO₂ ~ FootVM + velocity + HandVM (three-variable full model) 152 
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Here, velocity was treated as a continuous variable representing the treadmill walking 153 

speed (km·h⁻¹) under each condition. 154 

 155 

Statistical Analysis 156 

Descriptive statistics (mean ± standard deviation) for participant characteristics (age, 157 

height, body mass) were calculated separately for each sex. Between-group comparisons 158 

were performed using independent two-sample t-tests. 159 

Model performance was evaluated using the coefficient of determination (R²), standard 160 

error of estimate (SEE), Akaike Information Criterion (AIC), and standardized 161 

regression coefficients (βstd). A model improvement was considered meaningful when 162 

ΔAIC ≤ −2. To assess multicollinearity among explanatory variables, the variance 163 

inflation factor (VIF) was calculated, with VIF < 5 considered acceptable. 164 

To assess generalizability, subject-stratified five-fold cross-validation was performed, 165 

and the mean SEE was calculated. Agreement between predicted and measured VO₂ 166 

values was also evaluated using Bland–Altman analysis. All statistical analyses were 167 

conducted using R (ver. 4.4.0) and EZR (ver. 1.52, Saitama Medical Center, Jichi 168 

Medical University)12). A significance level of p < 0.05 was adopted. 169 
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 170 

Results 171 

Participant Characteristics 172 

Overall, 18 healthy adults (nine men, nine women; mean age 34.7 ± 8.3 years) 173 

participated in the study. The mean height was 173.8 ± 2.5 cm for men and 158.8 ± 6.1 174 

cm for women. Significant sex differences were observed in both height and body mass 175 

(both p < 0.05; Table 1). 176 

 177 

Changes in Oxygen Consumption and Ankle Vector Magnitude by Speed 178 

Both VO₂ and FootVM increased progressively with walking speed conditions (very 179 

slow, slow, middle, high), indicating a speed-dependent response load (Table 2). VO₂ 180 

rose from 9.51 ± 0.84 ml·kg⁻¹·min⁻¹ in the very slow-speed group to 181 

16.29 ± 1.78 ml·kg⁻¹·min⁻¹ in the high-speed group. Similarly, FootVM increased from 182 

8,344.76 ± 1,137.64 counts·10⁻¹ s to 16,843.69 ± 2,945.44 counts·10⁻¹ s. 183 

 184 

Model Development and Comparison 185 
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FootVM was significantly and positively correlated with VO₂ (r = 0.681, p < 0.001; 186 

Figure 1). To comprehensively capture physical movement, a three-variable model 187 

(Model 3) including FootVM, walking velocity, and HandVM was first constructed. 188 

Model performance (Table 3) was as follows: 189 

・Model 0 (velocity only): R² = 0.786, SEE = 1.34 190 

・Model 1 (FootVM only): R² = 0.464, SEE = 2.10 191 

・Model 2 (FootVM + velocity): R² = 0.810, SEE = 1.25, improved AIC (ΔAIC = 192 

−124.9) 193 

・Model 3 (FootVM + velocity + HandVM): R² = 0.815, SEE = 1.24. However, βstd 194 

for HandVM was −0.06 (p ≥ 0.05), indicating minimal contribution. The AIC worsened 195 

compared with that of Model 2 (+18.4). 196 

These findings suggest that upper limb acceleration (HandVM) does not significantly 197 

enhance the prediction of VO₂, and that Model 2 (FootVM + velocity) offers the most 198 

practical and accurate estimation. 199 

In Model 2, the VIFs for FootVM and velocity were both 1.56, indicating no 200 

multicollinearity concerns. An extended model including an interaction term between 201 

FootVM and velocity was also tested, but the addition of the interaction (β = 0.00013, p 202 
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< 0.001) did not improve model performance, and the AIC increased by +13.2. 203 

The final selected model, Model 2, was as follows (Table 4): 204 

VO₂ (ml·kg⁻¹·min⁻¹) = 1.563 + 0.00010 × FootVM (counts·10⁻¹ s) + 2.15 × velocity 205 

(km·h⁻¹) 206 

This model achieved an R² of 0.810 and SEE of 1.25 ml·kg⁻¹·min⁻¹, meeting the 207 

practical accuracy criterion of within ±1 metabolic equivalent of task (MET; 3.5 208 

ml·kg⁻¹·min⁻¹). 209 

In both Models 2 and 3, βstd for FootVM were negative (−0.877 and −0.764, 210 

respectively), likely reflecting multicollinearity, where most of the explained variance 211 

was absorbed by velocity. Indeed, the VIF for FootVM in Model 3 was slightly elevated 212 

at 5.29. 213 

However, in Model 1 (FootVM only), βstd was +1.964, showing a strong positive 214 

contribution, indicating that FootVM remains a valuable independent predictor of VO₂. 215 

 216 

Linear Mixed-Effects Model and Cross-Validation 217 

To account for inter-individual variability, a linear mixed-effects model was constructed 218 

using FootVM and velocity as fixed effects and participant identity document as a 219 
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random effect. Both variables remained statistically significant predictors (FootVM: β = 220 

0.00010, p < 0.001; velocity: β = 2.15, p < 0.001). 221 

In subject-stratified five-fold cross-validation, the mean SEE was 222 

1.32 ± 0.50 ml·kg⁻¹·min⁻¹, indicating no signs of overfitting and confirming the model’s 223 

generalizability. 224 

 225 

Bland–Altman Analysis 226 

A Bland–Altman plot was created to compare measured and predicted VO₂ values, 227 

showing a mean bias of 0.00 ml·kg⁻¹·min⁻¹, with 95% limits of agreement (LoA) 228 

ranging from −2.46 to +2.46 ml·kg⁻¹·min⁻¹( Figure 2). However, since this analysis was 229 

conducted using the same dataset for both model development and evaluation, further 230 

validation using independent datasets is warranted. 231 

 232 

Comparison Between Predicted and Measured Oxygen Consumption 233 

A scatter plot was created to compare predicted and measured VO₂ values, with data 234 

points color-coded by speed category, showing that most points were distributed closely 235 

along the identity line (y = x). The overall coefficient of determination was R² = 0.807, 236 
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indicating high agreement (Figure 3). 237 

 238 

Discussion 239 

In this preliminary study, we developed models to estimate VO₂ during walking using 240 

accelerations of the upper and lower limbs along with walking velocity, and statistically 241 

evaluated each variable’s contribution. A key feature of this study is the structured 242 

model development process, beginning with a comprehensive full model including 243 

upper limb acceleration (HandVM; Model 3), and then rationally simplifying it to a 244 

two-variable model (Model 2) consisting of only lower limb acceleration (FootVM) and 245 

walking velocity. This simplification was not arbitrary; rather, it was based on 246 

quantitative evidence showing the limited contribution of HandVM to VO₂ estimation. 247 

FootVM alone showed a moderate correlation with VO₂ (R² = 0.464), but the addition 248 

of walking velocity improved the model considerably (Model 2: R² = 0.810, SEE = 1.25 249 

ml·kg⁻¹·min⁻¹). Model 3, which included HandVM, slightly improved the fit (R² = 250 

0.815, SEE = 1.24); however, βstd for HandVM was −0.06 (p ≥ 0.05), and the AIC was 251 

18.4 points worse than that of Model 2. These findings suggest that HandVM does not 252 

significantly contribute to VO₂ prediction. 253 
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Model 2, consisting only of FootVM and velocity, achieved a practical balance between 254 

accuracy and simplicity, reducing the burden of both sensor placement and data 255 

processing. Prior studies have also pointed out that sensor location affects model 256 

accuracy. In particular, wrist acceleration is more prone to variability owing to non-257 

periodic and individual-specific movements, making it less stable for VO₂ estimation 258 

10,13). The current results support these previous observations. 259 

Model 2 performance was comparable with that of conventional hip-worn models. For 260 

example, Freedson et al.4) reported R² = 0.82 and SEE = 1.40 kcal·min⁻¹, and Nichols et 261 

al.5) reported R² = 0.68 and SEE = 2.5 ml·kg⁻¹·min⁻¹. In contrast, our Model 2 achieved 262 

R² = 0.81 and SEE = 1.25 ml·kg⁻¹·min⁻¹, using only FootVM and walking velocity, thus 263 

demonstrating equal or superior predictive accuracy with a more minimalistic setup 264 

(Table 5). Additionally, ankle-mounted sensors are less prone to displacement than are 265 

waist-mounted ones, making them potentially more suitable for use in clinical and home 266 

settings14). 267 

Bland–Altman analysis revealed a mean bias of 0.00 ml·kg⁻¹·min⁻¹ and LoA of ±2.46 268 

ml·kg⁻¹·min⁻¹, well within the 1 MET threshold (3.5 ml·kg⁻¹·min⁻¹), indicating the 269 

model’s practical utility for physical activity monitoring and exercise prescription. 270 
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However, since this study was conducted under controlled treadmill conditions, its 271 

generalizability to free-living environments remains untested. Barnett et al.9) reported 272 

that treadmill-based models can overestimate VO₂ by +4.99 ml·kg⁻¹·min⁻¹ in free-living 273 

conditions, highlighting how environmental differences can affect model accuracy. 274 

Further validation in diverse settings and populations is therefore essential to enhance 275 

the model’s applicability. 276 

Collectively, the final model using FootVM and velocity is a statistically validated, 277 

simplified, and highly accurate estimator of VO₂, with promising potential for clinical 278 

and real-world applications. 279 

 280 

Limitations 281 

This study has some limitations. First, regarding the participant characteristics, the 282 

sample was limited to young to middle-aged healthy adults with exercise habits. The 283 

model's applicability to older adults or individuals with gait impairments remains 284 

unverified. Second, the study was conducted in a controlled environment, and all data 285 

were collected on a treadmill. The accuracy of the model in free-living conditions has 286 

not been evaluated. Previous studies have shown that models developed in laboratory 287 
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settings tend to overestimate VO₂ in free-living contexts9), which remains a challenge 288 

for real-world application. Third, the sensor placement: only sensors attached to the 289 

wrists and ankles were investigated in this study. Comparison with hip- or trunk-290 

mounted sensors, which are commonly used in prior studies, was not conducted and 291 

warrants future investigation. Fourth, the model, which was intentionally kept simple, 292 

using only two predictors, FootVM and velocity, does not account for individual 293 

biomechanical differences such as height, body mass, or muscle strength, which may 294 

also influence VO₂. Lastly, the sample size: while cross-validation using the leave-one-295 

subject-out method confirmed acceptable generalizability, the sample size (n = 18) was 296 

relatively small. Future studies should include larger and more diverse populations to 297 

evaluate external validity. 298 

 299 

Conclusions 300 

In this study, we initially developed a full model incorporating upper limb acceleration 301 

and quantitatively evaluated the contribution of each variable. Based on these analyses, 302 

we rationally derived a simplified two-variable model (Model 2) consisting of FootVM 303 

and walking velocity. This model demonstrated high predictive accuracy for VO₂ (R² = 304 
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0.810, SEE = 1.25 ml·kg⁻¹·min⁻¹), achieving a practical level of precision within the 305 

acceptable error range of less than 1 MET. 306 

Notably, the addition of upper limb data did not lead to a significant improvement in 307 

prediction accuracy, indicating that the proposed model offers excellent wearability, 308 

simplicity, and reproducibility. These characteristics make it highly applicable in real-309 

world settings. Future studies should explore its generalizability and feasibility in free-310 

living environments and among clinical populations. 311 
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Figure Legends 375 

Figure 1. Relationship between FootVM and oxygen consumption per body mass (ml·376 

kg⁻¹·min⁻¹). Each point represents one trial. A significant positive correlation was 377 

observed (r = 0.681, p < 0.001). VO2, oxygen consumption; FootVM, vector magnitude 378 

of both ankles. 379 

 380 

Figure 2. Bland‒Altman plot showing the agreement between measured and predicted 381 

VO₂ (ml·kg⁻¹·min⁻¹). The solid line represents the mean difference (bias), and the dotted 382 

lines indicate the limits of agreement (mean ± 1.96 standard deviation). VO2, oxygen 383 

consumption. 384 

 385 

Figure 3. Scatter plot of predicted and observed VO₂ (ml·kg⁻¹·min⁻¹) during treadmill 386 

walking. The dashed line represents the line of identity (y = x). Each marker indicates a 387 

different walking speed category: + (very slow), ▲ (slow), × (middle), ● (high). VO2, 388 

oxygen consumption.  389 
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Table 1. Participant characteristics 

  
All 
 (n = 18) 

Males  
(n = 9) 

Females 
(n = 9) 

P-value 
 (Male vs Female) 

Age 
(years) 

34.7 ± 8.3 33.6 ± 7.7 35.8 ± 8.7 0.51 

Height 
(cm) 

166.3 ± 8.8 173.8 ± 2.5 158.8 ± 6.1 < 0.05 

Weight 
(kg) 

61.3 ± 10.5 66.7 ± 9.8 55.9 ± 8.0 < 0.05 

P-value: Two-sample t-test 



Table 2. Changes in VO₂ per body mass and FootVM at each speed 

Speed VO₂ (ml·kg⁻¹·min⁻¹) FootVM (counts·10⁻¹ s) 

Very slow 9.51 ± 0.84 8344.76 ± 1137.64 

Slow 10.72 ± 0.83 11558.88 ± 1369.06 

Middle 13.22 ± 1.30 14975.10 ± 1752.17 

High 16.29 ± 1.78 16843.69 ± 2945.44 

FootVM: Vector magnitude of acceleration counts summed over 10 seconds, measured at both 

ankles; VO2: Oxygen consumption. 



Table 3. Comparison of regression models 

Model 
Explanatory 
Variables 

R² 
SEE ΔAIC 

βstd 
(ml·kg⁻¹·min⁻¹)  (vs Model 1) 

Model 0 velocity 0.786 1.34 –72.3 velocity: +2.556 

Model 1 FootVM 0.464 2.1 0 (border) FootVM: +1.964 

Model 2 
FootVM + 
velocity 

0.81 1.25 –124.9 
FootVM: -0.877  

velocity: +3.309 

Model 3 
FootVM + 
velocity + 
HandVM 

0.815 1.24 18.4 

FootVM: -0.764 

velocity: +3.330 

HandVM: -0.162 (ns) 

ns: not significant (P ≥ 0.05). SEE: Standard Error of Estimate; βstd: Standardized Regression 

Coefficients; ΔAIC: Improvement in Akaike Information Criterion 



Table 4. Regression equation of the final model (Model 2) 

Variable βstd SEE 
95% Confidence 
Interval 

P-value 

intercept 1.563 0.4 0.76–2.36 <0.001 

FootVM 0.0001 0.00002 0.00006–0.00014 <0.001 

velocity 2.15 0.12 1.91–2.39 <0.001 

SEE: Standard Error of Estimate; βstd: Standardized Regression Coefficients 



Table 5. Comparison of model performance across previous studies and the present study 

Study Device Location Environment R² SEE 

Freedson et al., 1998 Hip Treadmill 0.82 1.40 kcal·min⁻¹ 

Nichols et al., 2000 Hip Treadmill 0.68 2.5 ml·kg⁻¹·min⁻¹ 

This study (Model 2) Ankle + velocity Treadmill 0.81 1.25 ml·kg⁻¹·min⁻¹ 

SEE: Standard Error of Estimate 
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Abstract

We aimed to develop regression models for estimating oxygen consumption (VO₂, ml·kg⁻¹·min⁻¹) during treadmill walking based on accelerations of the upper and lower limbs and walking velocity, quantitatively assess the contribution of each sensor location, and validate the accuracy and practicality of a simplified model.

Eighteen healthy adults with regular exercise habits (nine men, nine women) participated in treadmill walking trials at varying speeds (3–6 km·h⁻¹; up to 5.5 km·h⁻¹ for women). Vector magnitude (VM) from triaxial accelerometers attached to both wrists and both ankles was recorded simultaneously with VO₂ measurements from a portable breath-by-breath gas analyzer. Multiple regression models were constructed using FootVM (ankle VM), HandVM (wrist VM), and walking velocity as predictors.

FootVM alone showed a moderate correlation with VO₂ (R² = 0.464), but adding walking velocity substantially improved the model’s accuracy (Model 2: R² = 0.810, standard error of estimate = 1.25 ml·kg⁻¹·min⁻¹). Incorporating HandVM yielded only a minimal, non-significant model fit improvement (R² = 0.815, ΔAIC = +18.4, βstd = −0.06), with no meaningful statistical contribution. Bland–Altman analysis indicated 95% limits of agreement for estimation error within ±2.46 ml·kg⁻¹·min⁻¹, corresponding to < 1 MET (3.5 ml·kg⁻¹·min⁻¹). These findings support the rational selection of a simplified model using only FootVM and walking velocity, which achieved a balance between high accuracy and practicality. The ability to estimate VO₂ precisely using only ankle-mounted accelerometers highlights its potential for use in clinical and home-based physical activity assessment.



Keywords: accelerometer, oxygen consumption, gait, wearable sensor, model simplification
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足関節加速度と歩行速度に基づくトレッドミル歩行中の酸素消費量の簡易推定
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抄録

本研究では、トレッドミル歩行中の酸素摂取量（VO₂、ml·kg⁻¹·min⁻¹）を、上下肢の加速度および歩行速度に基づいて推定する回帰モデルを開発し、各センサー位置の寄与を定量的に評価するとともに、簡素化モデルの精度と実用性を検証することを目的とした。

定期的に運動習慣のある健常成人18名（男性9名、女性9名）が参加し、3〜6 km/h（女性は最大5.5 km/h）の異なる速度でトレッドミル歩行試験を実施した。両手関節および両足関節に装着した3軸加速度計から得られるベクトルマグニチュード（VM）と、携帯型呼気ガス分析装置によるVO₂測定を同時に記録した。FootVM（両足関節のVM合計値）、HandVM（両手関節のVM合計値）、歩行速度を説明変数として、複数の回帰モデルを構築した。

FootVM単独ではVO₂と中等度の相関（R² = 0.464）を示したが、歩行速度を加えることでモデルの精度は大幅に向上した（モデル2：R² = 0.810、推定標準誤差 = 1.25 ml·kg⁻¹·min⁻¹）。HandVMを追加してもモデル適合度の改善はごくわずかで統計的にも有意ではなかった（R² = 0.815、ΔAIC = +18.4、β標準化係数 = −0.06）。Bland–Altman解析では、推定誤差の95%限界が±2.46 ml·kg⁻¹·min⁻¹の範囲にあり、1 MET（3.5 ml·kg⁻¹·min⁻¹）未満であった。

これらの結果から、FootVMと歩行速度のみを用いた簡素なモデルの合理的選択が支持され、高精度と実用性のバランスを実現していることが示された。足関節装着型加速度計のみでVO₂を高精度に推定できることは、臨床や在宅における身体活動評価への応用可能性を示唆している。









Introduction

Estimating oxygen consumption (VO₂) and energy expenditure during walking is crucial in fields such as rehabilitation, sports medicine, and the assessment of daily physical activity1). In recent years, the development of wearable devices has led to growing interest in non-invasive and simple estimation methods using accelerometers2). Among these, vector magnitude (VM) derived from triaxial acceleration has been widely used as an indicator of physical activity intensity3,4).

Previous studies have primarily focused on estimating energy expenditure using accelerometers worn on the waist or thigh4-6). However, VM characteristics vary significantly depending on sensor placement. Wrist-worn sensors, in particular, are susceptible to variation in arm swing and inter-individual differences, potentially capturing movements not directly related to propulsion during walking, and thereby reducing prediction accuracy7,8). To address these limitations, some studies have proposed models incorporating multiple sensor placements or additional physiological indices such as heart rate9,10). However, these approaches often require multiple devices and complex data processing, limiting their practicality for clinical and daily use.

Therefore, a more practical approach may lie in identifying sensor placements that offer both predictive accuracy and simplicity. The ankle, which more directly reflects locomotor activity, has been suggested as a promising site for measuring walking-related acceleration. Yet, few studies have systematically compared the contributions of upper and lower limb accelerometry to VO₂ estimation.

This study aimed to develop regression models for estimating oxygen consumption during walking using accelerometer-derived VM data from both the upper and lower limbs, along with walking velocity, and to identify a simplified model that balances accuracy and ease of implementation.



Materials and Methods

Participants

Eighteen healthy adults with regular exercise habits (nine men and nine women, aged 20–50 years) were recruited. Written informed consent was obtained from all participants. The study was approved by the Ethics Committee of Kyoto Tanabe Memorial Hospital (Approval No.: RBMR-220414) and conducted in accordance with the principles of the Declaration of Helsinki.



Protocol 

Each participant performed treadmill walking at four different speeds: 3, 4, 5, and 6 km·h⁻¹ (up to 5.5 km·h⁻¹ for women). Each walking trial lasted 3 min, with data from the final min used for analysis.



Devices

Physical activity was measured using triaxial accelerometers (ActiGraph GT3X, ActiGraph LLC, USA), attached with Velcro straps to both wrists and both ankles (four sites). VO2 was measured in real time using a portable breath-by-breath gas analyzer (Aeromonitor AE-310S, Minato Medical Science, Japan). The average VO₂ (ml·kg⁻¹·min⁻¹) over the final min of each walking condition was calculated.



Signal Processing

Raw acceleration data (30 Hz) were processed using ActiLife software (ver. 6.13.4, ActiGraph LLC). VM was calculated after applying a normal filter (0.25–2.5 Hz) using the following formula11) :
VM = √(X² + Y² + Z²)
The resulting counts are dimensionless values derived from ActiGraph’s proprietary algorithm and are widely used as indicators of physical activity intensity4). In this study, the sum of VM from the right and left ankles was defined as FootVM, and the sum from both wrists as HandVM, expressed in counts·10⁻¹ s.



Model Construction

We aimed to develop a simple and accurate regression model to estimate VO₂ (ml·kg⁻¹·min⁻¹) based on accelerometer data. First, a comprehensive full model (Model 3) was developed using both upper and lower limb accelerometry data plus walking velocity, and the contribution and predictive performance of each variable were assessed.

The following four regression models were constructed and compared for predictive accuracy:

1. Model 0: VO₂ ~ velocity (univariable model using velocity only)

2. Model 1: VO₂ ~ FootVM (univariable model using FootVM only)

3. Model 2: VO₂ ~ FootVM + velocity (two-variable model)

4. Model 3: VO₂ ~ FootVM + velocity + HandVM (three-variable full model)

Here, velocity was treated as a continuous variable representing the treadmill walking speed (km·h⁻¹) under each condition.



Statistical Analysis

Descriptive statistics (mean ± standard deviation) for participant characteristics (age, height, body mass) were calculated separately for each sex. Between-group comparisons were performed using independent two-sample t-tests.

[bookmark: _Hlk205379335]Model performance was evaluated using the coefficient of determination (R²), standard error of estimate (SEE), Akaike Information Criterion (AIC), and standardized regression coefficients (βstd). A model improvement was considered meaningful when ΔAIC ≤ −2. To assess multicollinearity among explanatory variables, the variance inflation factor (VIF) was calculated, with VIF < 5 considered acceptable.

To assess generalizability, subject-stratified five-fold cross-validation was performed, and the mean SEE was calculated. Agreement between predicted and measured VO₂ values was also evaluated using Bland–Altman analysis. All statistical analyses were conducted using R (ver. 4.4.0) and EZR (ver. 1.52, Saitama Medical Center, Jichi Medical University)12). A significance level of p < 0.05 was adopted.



Results

Participant Characteristics

Overall, 18 healthy adults (nine men, nine women; mean age 34.7 ± 8.3 years) participated in the study. The mean height was 173.8 ± 2.5 cm for men and 158.8 ± 6.1 cm for women. Significant sex differences were observed in both height and body mass (both p < 0.05; Table 1).



Changes in Oxygen Consumption and Ankle Vector Magnitude by Speed

Both VO₂ and FootVM increased progressively with walking speed conditions (very slow, slow, middle, high), indicating a speed-dependent response load (Table 2). VO₂ rose from 9.51 ± 0.84 ml·kg⁻¹·min⁻¹ in the very slow-speed group to 16.29 ± 1.78 ml·kg⁻¹·min⁻¹ in the high-speed group. Similarly, FootVM increased from 8,344.76 ± 1,137.64 counts·10⁻¹ s to 16,843.69 ± 2,945.44 counts·10⁻¹ s.



Model Development and Comparison

FootVM was significantly and positively correlated with VO₂ (r = 0.681, p < 0.001; Figure 1). To comprehensively capture physical movement, a three-variable model (Model 3) including FootVM, walking velocity, and HandVM was first constructed. Model performance (Table 3) was as follows:

・Model 0 (velocity only): R² = 0.786, SEE = 1.34

・Model 1 (FootVM only): R² = 0.464, SEE = 2.10

・Model 2 (FootVM + velocity): R² = 0.810, SEE = 1.25, improved AIC (ΔAIC = −124.9)

・Model 3 (FootVM + velocity + HandVM): R² = 0.815, SEE = 1.24. However, βstd for HandVM was −0.06 (p ≥ 0.05), indicating minimal contribution. The AIC worsened compared with that of Model 2 (+18.4).

These findings suggest that upper limb acceleration (HandVM) does not significantly enhance the prediction of VO₂, and that Model 2 (FootVM + velocity) offers the most practical and accurate estimation.

In Model 2, the VIFs for FootVM and velocity were both 1.56, indicating no multicollinearity concerns. An extended model including an interaction term between FootVM and velocity was also tested, but the addition of the interaction (β = 0.00013, p < 0.001) did not improve model performance, and the AIC increased by +13.2.
The final selected model, Model 2, was as follows (Table 4):

VO₂ (ml·kg⁻¹·min⁻¹) = 1.563 + 0.00010 × FootVM (counts·10⁻¹ s) + 2.15 × velocity (km·h⁻¹)

This model achieved an R² of 0.810 and SEE of 1.25 ml·kg⁻¹·min⁻¹, meeting the practical accuracy criterion of within ±1 metabolic equivalent of task (MET; 3.5 ml·kg⁻¹·min⁻¹).

In both Models 2 and 3, βstd for FootVM were negative (−0.877 and −0.764, respectively), likely reflecting multicollinearity, where most of the explained variance was absorbed by velocity. Indeed, the VIF for FootVM in Model 3 was slightly elevated at 5.29.
However, in Model 1 (FootVM only), βstd was +1.964, showing a strong positive contribution, indicating that FootVM remains a valuable independent predictor of VO₂.



Linear Mixed-Effects Model and Cross-Validation

To account for inter-individual variability, a linear mixed-effects model was constructed using FootVM and velocity as fixed effects and participant identity document as a random effect. Both variables remained statistically significant predictors (FootVM: β = 0.00010, p < 0.001; velocity: β = 2.15, p < 0.001).
In subject-stratified five-fold cross-validation, the mean SEE was 1.32 ± 0.50 ml·kg⁻¹·min⁻¹, indicating no signs of overfitting and confirming the model’s generalizability.



Bland–Altman Analysis

A Bland–Altman plot was created to compare measured and predicted VO₂ values, showing a mean bias of 0.00 ml·kg⁻¹·min⁻¹, with 95% limits of agreement (LoA) ranging from −2.46 to +2.46 ml·kg⁻¹·min⁻¹( Figure 2). However, since this analysis was conducted using the same dataset for both model development and evaluation, further validation using independent datasets is warranted.



Comparison Between Predicted and Measured Oxygen Consumption

A scatter plot was created to compare predicted and measured VO₂ values, with data points color-coded by speed category, showing that most points were distributed closely along the identity line (y = x). The overall coefficient of determination was R² = 0.807, indicating high agreement (Figure 3).



Discussion

In this preliminary study, we developed models to estimate VO₂ during walking using accelerations of the upper and lower limbs along with walking velocity, and statistically evaluated each variable’s contribution. A key feature of this study is the structured model development process, beginning with a comprehensive full model including upper limb acceleration (HandVM; Model 3), and then rationally simplifying it to a two-variable model (Model 2) consisting of only lower limb acceleration (FootVM) and walking velocity. This simplification was not arbitrary; rather, it was based on quantitative evidence showing the limited contribution of HandVM to VO₂ estimation.

[bookmark: _Hlk205379271]FootVM alone showed a moderate correlation with VO₂ (R² = 0.464), but the addition of walking velocity improved the model considerably (Model 2: R² = 0.810, SEE = 1.25 ml·kg⁻¹·min⁻¹). Model 3, which included HandVM, slightly improved the fit (R² = 0.815, SEE = 1.24); however, βstd for HandVM was −0.06 (p ≥ 0.05), and the AIC was 18.4 points worse than that of Model 2. These findings suggest that HandVM does not significantly contribute to VO₂ prediction.

Model 2, consisting only of FootVM and velocity, achieved a practical balance between accuracy and simplicity, reducing the burden of both sensor placement and data processing. Prior studies have also pointed out that sensor location affects model accuracy. In particular, wrist acceleration is more prone to variability owing to non-periodic and individual-specific movements, making it less stable for VO₂ estimation 10,13). The current results support these previous observations.

Model 2 performance was comparable with that of conventional hip-worn models. For example, Freedson et al.4) reported R² = 0.82 and SEE = 1.40 kcal·min⁻¹, and Nichols et al.5) reported R² = 0.68 and SEE = 2.5 ml·kg⁻¹·min⁻¹. In contrast, our Model 2 achieved R² = 0.81 and SEE = 1.25 ml·kg⁻¹·min⁻¹, using only FootVM and walking velocity, thus demonstrating equal or superior predictive accuracy with a more minimalistic setup (Table 5). Additionally, ankle-mounted sensors are less prone to displacement than are waist-mounted ones, making them potentially more suitable for use in clinical and home settings14).

Bland–Altman analysis revealed a mean bias of 0.00 ml·kg⁻¹·min⁻¹ and LoA of ±2.46 ml·kg⁻¹·min⁻¹, well within the 1 MET threshold (3.5 ml·kg⁻¹·min⁻¹), indicating the model’s practical utility for physical activity monitoring and exercise prescription.

However, since this study was conducted under controlled treadmill conditions, its generalizability to free-living environments remains untested. Barnett et al.9) reported that treadmill-based models can overestimate VO₂ by +4.99 ml·kg⁻¹·min⁻¹ in free-living conditions, highlighting how environmental differences can affect model accuracy. Further validation in diverse settings and populations is therefore essential to enhance the model’s applicability.

Collectively, the final model using FootVM and velocity is a statistically validated, simplified, and highly accurate estimator of VO₂, with promising potential for clinical and real-world applications.



Limitations

This study has some limitations. First, regarding the participant characteristics, the sample was limited to young to middle-aged healthy adults with exercise habits. The model's applicability to older adults or individuals with gait impairments remains unverified. Second, the study was conducted in a controlled environment, and all data were collected on a treadmill. The accuracy of the model in free-living conditions has not been evaluated. Previous studies have shown that models developed in laboratory settings tend to overestimate VO₂ in free-living contexts9), which remains a challenge for real-world application. Third, the sensor placement: only sensors attached to the wrists and ankles were investigated in this study. Comparison with hip- or trunk-mounted sensors, which are commonly used in prior studies, was not conducted and warrants future investigation. Fourth, the model, which was intentionally kept simple, using only two predictors, FootVM and velocity, does not account for individual biomechanical differences such as height, body mass, or muscle strength, which may also influence VO₂. Lastly, the sample size: while cross-validation using the leave-one-subject-out method confirmed acceptable generalizability, the sample size (n = 18) was relatively small. Future studies should include larger and more diverse populations to evaluate external validity.



Conclusions

In this study, we initially developed a full model incorporating upper limb acceleration and quantitatively evaluated the contribution of each variable. Based on these analyses, we rationally derived a simplified two-variable model (Model 2) consisting of FootVM and walking velocity. This model demonstrated high predictive accuracy for VO₂ (R² = 0.810, SEE = 1.25 ml·kg⁻¹·min⁻¹), achieving a practical level of precision within the acceptable error range of less than 1 MET.

Notably, the addition of upper limb data did not lead to a significant improvement in prediction accuracy, indicating that the proposed model offers excellent wearability, simplicity, and reproducibility. These characteristics make it highly applicable in real-world settings. Future studies should explore its generalizability and feasibility in free-living environments and among clinical populations.
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Figure Legends

Figure 1. Relationship between FootVM and oxygen consumption per body mass (ml·kg⁻¹·min⁻¹). Each point represents one trial. A significant positive correlation was observed (r = 0.681, p < 0.001). VO2, oxygen consumption; FootVM, vector magnitude of both ankles.



Figure 2. Bland–Altman plot showing the agreement between measured and predicted VO₂ (ml·kg⁻¹·min⁻¹). The solid line represents the mean difference (bias), and the dotted lines indicate the limits of agreement (mean ± 1.96 standard deviation). VO2, oxygen consumption.



Figure 3. Scatter plot of predicted and observed VO₂ (ml·kg⁻¹·min⁻¹) during treadmill walking. The dashed line represents the line of identity (y = x). Each marker indicates a different walking speed category: + (very slow), ▲ (slow), × (middle), ● (high). VO2, oxygen consumption. 



