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Abstract

This study aimed to investigate the relationship between cross-sectional area
(CSA) of lower limb muscles and UUS velocity on swimmers. Eighteen male swimmers
at the regional to national level participated in this study. Kinematic data during
maximum-effort UUS were collected using an underwater motion capture system to
determine the mean UUS velocity. T1-weighted cross-sectional magnetic resonance (MR)
images of the lower limb muscles were acquired using a 3T MR imaging system to
determine the CSA of 17 muscles on the swimmers’ right side. Relationships between
UUS velocity and the CSA of lower limb muscles were examined using correlation
coefficients. A positive significant correlation was found between CSA of rectus femoris
and UUS velocity (absolute value: »=0.475 p = 0.046, relative value: r=0.548 p =0.019).
However, UUS velocity was not significantly correlated to CSA of other lower limb
muscles (» = - 0.445 ~ 0.469). These results suggest that the CSA of rectus femoris has a
moderate relationship between UUS velocity among the lower limb muscles, regardless
of the body size. Revealing the relationships between muscle size and UUS velocity can
provide an important insight regarding which lower limb muscles should be strengthened

to enhance UUS performance for swimmers, coaches and researchers.
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Introduction

Swimmers were permitted to propel underwater up to 15 m after start and turn,
especially butterfly, backstroke and freestyle events (1); therefore, they generally
performed the underwater undulatory swimming (UUS) during these phases. Swimmers
can maintain their high swimming velocity produced by the push-off start during the
underwater phase following a turn compared to surface swimming (2), as they can avoid
wave drag during UUS (3). Furthermore, a previous study suggested that producing high
velocity during the start and turn phases is significantly associated with improved overall
race performance (2). Although the underwater phase after the start and turn consists of
both a glide and an underwater kick phase, previous studies have highlighted the
importance of producing high velocity through UUS during these phases (2, 4). These
findings suggest that UUS is one of the important factors for achieving their great race
time.

Some athletes require large muscle size to achieve great sports performance. This
may be because many outstanding sports performances are significantly related to muscle
strength, which is influenced by factors such as neural activation levels (5) and large
muscle cross-sectional area (CSA) (6). Swimming velocity is determined by the balance
between the propulsive and braking fluid forces generated by swimmer’s motion. Thus,
previous studies have investigated the relationship between swimming performance and

muscle size. The large muscle thickness of thigh and arm muscles were significantly
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related to the fast front crawl time (7, 8). Moreover, one repetition maximum of bench
press, squat and lat pull down back were significantly correlated with high swimming
velocity (9, 10). These findings indicate that large muscle size, which is related to greater
muscle strength, may be one of the factors contributing to achieving the high swimming
velocity. Muscle size can be measured by ultrasonography or magnetic resonance (MR)
imaging. MR imaging allows measurement of CSA for both superficial and deep muscles.
Therefore, the relationships between CSA including all relevant muscles and swimming
performance can be revealed using this method.

In UUS, swimmers propel underwater through downward and upward movement
of the lower limbs; therefore, they may necessarily have the large lower limb muscle size
to produce the forward high velocity. Previous studies have reported that high angular
velocities of the hip, knee, and ankle joints are significantly related to high UUS velocity
(11-13). Mechanically, these high joint angular velocities in the lower limbs increase toe
vertical velocity and kick frequency, both of which are important parameters for
achieving high UUS velocity (14-16). From a hydrodynamic perspective, the high feet
velocity generates greater propulsive fluid force, resulting in increased UUS velocity (17).
Based on these previous studies (11-16), swimmers would require great lower limb
muscle strength to correspond the large propulsive fluid force applied to their feet. Thus,
the large lower limb muscle size is likely to be related to the high UUS velocity; however,

it has never been investigated. Understanding the relationship between muscle size and
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UUS velocity can provide fundamental insights for training and swimming science. The
current results, therefore, offer valuable information for swimmers, coaches, and
researchers regarding which lower limb muscles should be strengthened to enhance UUS
performance. The purpose of this study, therefore, was to investigate the relationship
between the lower limb muscle sizes and the velocity of UUS on swimmers. The high toe
vertical velocities, which the most important factor to produce the high UUS velocity
may be produced by the hip flexion and knee extension during downward kick, whereas
the corresponding velocity may be induced by the hip extension and knee flexion during
upward kick (14-16). Therefore, the present study hypothesized that the large CSA of

lower limb hip and knee flexion/extension muscles are related to the high UUS velocity.

Materials & Methods

Participants

Eighteen college male swimmers participated in this study (age; 20.7 + 1.2 years,
body height; 1.72 + 0.06 m, body mass; 67.0 £ 7.5 kg). The participants included four
butterfly, three backstroke, two breaststroke, six freestyle and two individual medley
swimmers. World Aquatics Point Score of swimmers’ personal best for long course was
573.15 to 774.81. We calculated the minimum sample size using G*power before
conducting the experiment (18). The sample size was determined as 13 with the

assumption of 1- = 0.80 power and a = 0.05 significance level and correlation p = 0.70
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using two-tailed test. The p level was determined based on a previous study that reported
correlation coefficients ranging from 0.639 to 0.802 between muscle CSA and sprint
running time (19), and the standard interpretation of correlation coefficient (20). Written
informed consent was obtained from the participants before conducting the experiment.
This study was approved by the Ethics Committee of Ritsumeikan University (BKC-
LSMH-2022-061) and was conducted in accordance with the guidelines of the

Declaration of Helsinki.

Experimental setting and data collection

The swimming trial was conducted in an indoor pool (25 m x 7 lanes, depth: 1.35
m, water temperature: 30 °C). The fifteen reflective makers were attached to the
participants’ body. The landmarks were as follows: both of anterior superior iliac spine,
posterior superior iliac spine, greater trochanter, right side of the midpoint of thigh, lateral
femoral epicondyle, medial femoral epicondyle, midpoint of lower leg, lateral malleoli,
medial malleoli, calcaneus, epiphysis of the first metatarsal, epiphysis of the fifth
metatarsal (Fig. 1). After 10 min self-selected warm-up, participants performed three 20
m UUS trials at their maximal effort using a push-off start with 3 min rest between trials
to avoid fatigue (13). The three-dimensional coordinate data of reflective markers were
collected by underwater motion capture system with six cameras at sampling rate of 100

Hz (Qualysis, Sweden) (Fig. 2). Swimmers were instructed to maintain their body more
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than 0.75 m from water surface to avoid the wave drag effect and to hold their breath
during UUS trials (3).

T1-weighted cross-sectional MR images of lower limb muscles were collected by
3T MR image equipment (Magnetom Skyra; Siemens Healthcare). The scanning range
was between xiphoid process and right foot of participants. The scanning condition of
trunk was as follows: field of view, 420 x 420 mm; matrix, 512 x 512; slice thickness, 5
mm; TR, 140 ms; TE, 2.46 ms; gap, 5 mm, The scanning condition of right leg was as
follows: field of view , 260 x 260 mm; matrix, 512 x 512; slice thickness, 5 mm; TR, 700
ms; TE; 11 ms; gap, 5 mm (21). The scanned muscles were as follows: psoas major (PM),
gluteus maximums (GM), adductor longus (AL), adductor brevis (AB), adductor magnus
(AM), rectus femoris (RF), vastus lateral (VL), vastus internal (VI), vastus medial (VM),
biceps femoris short head (BFS), biceps femoris long head (BFL), semitendinosus (ST),
semimembranosus (SM), tibialis anterior (TA), extensor digitorum longus (EDL)
gastrocnemius (GAS) and soleus (SOL). Participants were instructed in prone positions
for scanning all muscles except the GM, whereas they were offered in supine positions
for scanning the GM. When scanning was conducted in prone position, participants fully
extended their hip and knee joints with the ankle joint at 90 degrees. Participants kept
fully extending their hip, knee and ankle joints when they were scanned in supine

positions. These scanning positions were based on a previous study (22).
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The body fat-free mass (FFM) of participants was obtained to normalize muscle

CSA by body composition analyzer (InBody770, InBody).

Data analysis

The three-dimensional coordinate data during UUS were smoothed by the fourth-
order Butterworth low pass filter with a cut-off frequency of 6 Hz (23). The x, y and z
axes were defined as the long, short and vertical axis of the pool lane, respectively (Fig.
2). A kick cycle was defined from the instance of the highest right epiphysis of the fifth
metatarsal marker to the instance of the next highest corresponding marker (13, 17). The
x component of velocity for midpoint of greater trochanter was determined as a UUS
velocity. The kick frequency was determined as the reciprocal of the duration of each kick
cycle. The kick length was calculated from the mean UUS velocity and kick frequency
for each cycle. The vertical amplitude was defined as the difference between the highest
and lowest positions of the epiphysis of the fifth metatarsal. The maximum toe vertical
velocity was obtained for both the upward and downward kick phases. Average value was
calculated from three continuous kick cycles and adopted to the analysis (24).

The CSA of scanned lower limb muscles were determined from cross-sectional
images of right side by image processing software (Horos Project). The CSA of PM was
measured at the middle level of the L4 and L5. The CSA of GM was measured at the

greater trochanter level. The CSA of AL, AB and AM were measured at proximal 30 %



185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

12

of the thigh length. The CSA of RF, VL, VI and VM were measured at 50 % of the thigh
length. CSA of BFS, BFL, ST and SM were measured at proximal 70 % of the thigh
length. CSA of TA, EDL, GAS and SOL were measured at proximal 30 % of the shank
length. These CSA measurements were conducted based on previous studies (22, 25) (Fig.
3). The CSA of adductor muscles (ADD) was measured as summed of AL, AB and AM.
The CSA of quadriceps femoris (QF) was obtained as summed of RF, VL, VI and VM.
The BFS, BFL, ST and SM were summed to obtain the CSA of hamstrings (HAM). The
CSA of dorsal (DF) and planter (PF) flexor muscle were determined as summed of TA
and EDL, and GAS and SOL, respectively. The CSA measurement was repeated by the
same examiner on another day and the mean values of the twice processing was used for
statistical analysis. To exclude the effect of body mass and fat, these muscle CSA were
normalized by two-thirds power of participants’ FFM (26, 27). The mean value of
intraclass correlation coefficient (ICC) and coefficient variance (%CV) of each CSA of
lower limb muscles were determined. The ICC (1, 2) values ranged from 0.784 to 0.999

and the %CV values ranged from 0.8 % to 5.8%, indicating high measurement reliability.

Statistical analysis
Analyzed data are presented as mean + standard deviation. The normality of
collected data was confirmed using Shapiro-Wilk test. 88.6 % (39 of 44 measures) of all

collected data were normally distributed. Previous studies conducted parametric
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statistical tests when more than 90 % of the variables were normally distributed to
maintain consistency (28-30). Differences between the corresponding values in previous
studies and the present study may be due to differences in the number of the outcome
measures and sample size. The number of normally distributed variables in this study was
similar to those reported in previous studies (28-30); therefore, correlation coefficients in
the present study were also determine using parametric statistical tests to maintain
consistency. The correlation coefficients between UUS velocity and lower limbs CSA
were determined using Pearson’s correlation coefficient. The correlation coefficients
between UUS velocity and lower limbs CSA were determined using Pearson’s correlation
coefficient. In this study, the correlation coefficient for 0.00-0.10, 0.10-0.39, 0.40-0.69,
0.70-0.89 and 0.90-1.00 indicates “negligible”, “weak”, “moderate”, “strong” and “very
strong”, respectively (20). The significance level was set at p < 0.05. All statistical

analysis was conducted by SPSS statistics ver. 29 (IBM Corp, Armonk, NY, USA).

Results
The mean value of FFM for participants was 57.1 + 5.6 (kg). Table 1 and 2
represents the absolute and relative values of CSA for analyzed muscles and kinematic
data during UUS, respectively. A positive significant moderate correlation was found
between the absolute and relative CSA of RF and UUS velocity (Table 3). The CSA of

PM, GM, AL, AB, AM, VL, VI, VM, BFS, BFL, ST, SM, TA, EDL, GAS, SOL, ADD,
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QF, HAM, DF and PF were not significantly correlated to the mean value of UUS velocity

(Table 3).

Discussion

This study investigated the relationships between the CSA of lower limb muscles
and UUS velocity on regional to national level male swimmers. A positive significant
moderate correlation was found between the absolute and relative CSA of RF and UUS
velocity; however, CSA of other muscles were not significantly related to the
corresponding velocity. Therefore, the hypothesis of this study was partly supported.
These results indicate that the CSA of RF has the relationship with UUS velocity among
the lower muscles, regardless of body size.

A moderate positive correlation was found between UUS velocity and both the
absolute and relative values of RF CSA (Table 3). The hip flexion and knee extension
were found during the downward kick on UUS, and the muscle activation of RF was also
found during the corresponding phases (31). A previous study reported that RF activation
became stronger during the downward kick as swimmers produce the high UUS velocity
compared to moderate effort (32). Previous studies suggested that the high UUS velocity
was induced by the high swimmers’ toe velocity during downward kick (11, 13). The
reason could be that the high toe vertical velocity induces an increase in the propulsive

fluid force applied to the swimmers’ feet during UUS (11, 13). An increase in propulsive
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fluid force is induced by changes in vortex structure caused by the generation of large
momentum in the flow field during UUS (33). Mechanically, the higher their toe vertical
velocity during the downward kick is induced by the quick hip flexion and knee extension
on UUS. Moreover, a previous study suggested that the human with large muscle size
could activate their muscles stronger than the human who have small muscle size (6). To
summarize these studies and the current results, the swimmers with large CSA of RF
might be able to perform the UUS with high toe velocity since they could achieve the
quick hip flexion and knee extension during the downward kick. In addition, although a
large RF size may contribute to producing greater propulsive fluid force, a larger muscle
size could also increase the braking fluid force during UUS. A previous study suggested
that swimmers with larger muscle size exhibit a trade-off between propulsive and braking
fluid forces (34). Therefore, the negative effect of a large CSA of the RF on braking fluid
force may affect its positive effect on propulsive fluid force, which could explain the
moderate correlation observed with UUS velocity. This result indicates that a large RF
size, regardless of body size, may have a greater positive effect on producing high UUS
velocity than the negative effect associated with generating braking fluid force.

No significant correlation was found between muscle CSA and UUS velocity,
excepting the CSA of RF for current swimmers. The PM contributes to the hip flexion
during downward kick on UUS. The QF excepting RF induces the knee extension during

downward kick on UUS. During the upward kick, the HAM and GM contribute to the hip
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extension (31, 32). The ADD may induces the hip flexion, extension and adduction during
one kick cycle during UUS. The DF and PF muscles were used to maintain planter flexion
angles by co-activation during UUS (31). However, a previous study suggested that the
QF, HAM, ADD, DF and PF may not be utilized more than RF during UUS with
swimmers’ nearly maximum effort (32). Therefore, these muscle sizes may not be a
significant factor to achieve the high UUS velocity. On the other hand, the high muscle
activation was found for GM during upward kick on UUS with high forward velocity
(32). Previous studies reported that the lower limb motion during the upward kick was
significantly related to achieve the high UUS velocity (11, 13). The reason was indicated
by a systematic review (35) as follows: 1) the study (11) had high validation in
competitive levels, 2) the only high-level swimmers (World Aquatic Point Score > 800)
may be able to achieve the high upward kick performance during UUS (13). Also, a
systematic review suggested only swimmers with highly competitive level can improve
their swimming velocity of UUS with increasing kick frequency (14). The competitive
level of the current swimmers was regional to national level according to the previous
study (35); therefore, the differences of competitive level also may lead to the differences
in correlation between muscle size and UUS velocity. Moreover, the validation of the
corresponding level was lower than previous studies (11, 13). Hence, no significant
correlation was found between the CSA of GM and UUS velocity in the current study.

For the same reason as RF, PM size might also induce the high UUS velocity during
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downward kick; however, the current results showed no significant correlation (Table 3).
These suggest that the muscle sizes of lower limb muscle excepting the RF may not be
significant determinant to produce the high UUS velocity for current swimmers’
competitive level.

The current study has three important limitations regarding the interpretation of
the results. The current results are specific to regional to national level swimmers
according to the previous study (35). Moreover, the kinematic parameters during UUS
were similar to those reported or swimmers of the corresponding level in previous studies
(15) (Table 2); therefore, the current results may be applicable to these levels but not to
swimmers of other levels. A previous study suggested that the important kinematic
parameters of UUS for producing the high UUS velocity were different among
competitive levels (14). Therefore, differences in competitive level may also lead to
variations in the correlation between muscle size and UUS velocity. To address this
limitation, future studies should investigate the relationship between muscle size and
UUS velocity in swimmers of different competitive levels. Second, the present study
could not determine whether the large size of RF was due to training effects or congenital
factors. Therefore, longitudinal studies, such as training interventions, should be
conducted in the future to clarify the importance of a large CSA of RF for achieving high

UUS performance.
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Conclusion
This study investigated the relationships between the muscle CSA of lower limb
and UUS velocity on swimmers. A positive significant correlation was found between the
absolute and relative CSA of RF and UUS velocity; however, CSA of other muscles were
not significantly correlated with corresponding velocity. These results suggest that the
CSA of RF has relationship with UUS velocity among the lower limb muscles, regardless

of body size.
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Table 1. Mean and standard deviation value of the absolute and relative cross-sectional

area of lower limb muscles. PM: psoas major, GM: glute maximum, ADD: adductor

muscles, AM: adductor maximum, AB: adductor brevis, AL: adductor longus, QF:

quadriceps femoris, RF: rectus femoris, VL: vastus lateral, VI: vastus interval, VM:

vastus medial, HAM: hamstrings, BFS: biceps femoris short head, BFL: biceps femoris

long head, ST: semitendinosus, SM: semimembranosus, DF: dorsal flexor muscle, TA:

tibialis anterior, EDL: extensor digitorum longus, PF: planter flexor muscle, GAS:

gastrocnemius, SOL: soleus.

Absolute (cm?)

Relative (cm*/kg

2/3)

Mean + SD Mean + SD

PM 1691 + 2.13 1.14 + 0.14
GM 53.80 + 7.04 3.63 + 041
ADD 53.19 + 9.26 359 + 043
AL 1641 + 3.22 215 £ 024
AB 485 + 145 0.33 + 0.10
AM 3192 + 444 I.11 + 0.20
QF 75.19 + 9.26 5.07 + 047
RF 7.09 + 1.29 048 + 0.08
VL 2793 + 449 1.88 + 0.27
VI 2230 + 3.39 1.50 + 0.19
VM 17.85 + 2.89 1.20 + 0.16
HAM 27.13 + 4.08 1.83 + 0.27
BFS 581 + 0.77 0.39 + 0.06
BML 516 + 1.57 0.35 £+ 0.11
ST 450 + 147 0.30 + 0.10
SM 11.66 + 1.83 0.79 + 0.12
DF 10.11 + 1.28 0.68 + 0.08
TA 7.16 + 1.10 0.49 + 0.08
EDL 296 + 046 0.20 + 0.03
PF 4386 + 490 296 + 0.29
GAS 2207 + 3.25 1.49 + 0.19
SOL 21.82 + 2.40 1.48 + 0.16
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Table 2. The kinematic data during underwater undulatory swimming
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Mean + SD

Swimming velocity (m/s) 1.39 £ 0.12
Kick frequency (Hz) 229 £+ 0.19
Kick length (m/kick) 0.61 <+ 0.05
Kick amplitude (m) 0.48 =+ 0.04
Vertical toe velocity (m/s)

Downward kick -238 = 0.17

Upward kick 1.99 £ 0.19
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Table 3. Correlation coefficient between the absolute and relative cross-sectional area of
lower limb muscles and swimming velocity during underwater undulatory swimming.
PM: psoas major, GM: glute maximum, ADD: adductor muscles, AM: adductor
maximum, AB: adductor brevis, AL: adductor longus, QF: quadriceps femoris, RF: rectus
femoris, VL: vastus lateral, VI: vastus interval, VM: vastus medial, HAM: hamstrings,
BFS: biceps femoris short head, BFL: biceps femoris long head, ST: semitendinosus, SM:

semimembranosus, DF: dorsal flexor muscle, TA: tibialis anterior, EDL: extensor

digitorum longus, PF: planter flexor muscle, GAS: gastrocnemius, SOL: soleus.

Swimming velocity

Absolute (cm?) Relative (cm?/kg*?)
r p r p
PM 0.413 0.088 0.469 0.050
GM -0.155 0.538 -0.078 0.760
ADD 0.001 0.996 0.090 0.723
AL 0.051 0.842 0.111 0.660
AB 0.081 0.750 0.153 0.544
AM -0.061 0.811 0.008 0.976
QF -0.170 0.559 -0.064 0.801
RF 0.475" 0.046 0.548" 0.019
VL 0.066 0.794 0.183 0.468
VI -0.164 0.515 -0.304 0.438
VM -0.445 0.064 -0.438 0.069
HAM 0.241 0.335 0.307 0.215
BFS -0.039 0.877 0.020 0.939
BFL 0.299 0.228 0.316 0.202
ST 0.307 0.215 0.354 0.150
SM 0.050 0.844 0.119 0.638
DF -0.260 0.298 -0.183 0.468
TA -0.114 0.570 -0.080 0.753
EDL -0.310 0.211 -0.283 0.255
PF 0.010 0.970 0.115 0.648
GAS 0.120 0.634 0.238 0.342
SOL -0.149 0.555 -0.075 0.767
*: p<0.05
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Figure captions

Figure 1. The marker set of this study.

Figure 2. Experimental setting. The X, y and z axes of the global coordinate system were

defined as a long, short and vertical direction of the pool lane, respectively.

Figure 3. Transversal images of lower limb muscles scanned by magnetic resonance
imaging. A: the cross-sectional area (CSA) of psoas major (PM) was obtained at the level
between L4 and L5, B: The CSA of glute maximum (GM) was obtained at the level of
greater trochanter, C: The CSA of adductor longus (AL), adductor brevis (AB) and
adductor magnus (AM) were obtained at the proximal 30% of the thigh length, D: The
CSA of rectus femoris (RF), vastus lateral (VL), vastus internal (VI) and vastus medial
(VM) were obtained at 50% of the thigh length. E: The CSA of biceps femoris short head
(BFS), biceps femoris long head (BFL), semitendinosus (ST) and semimembranosus
(SM) were obtained at the proximal 70% of the thigh length, F: The CSA of tibialis
anterior (TA), extensor digitorum longus (EDL), gastrocnemius (GAS) and soleus (SOL)

were obtained at 30% proximal of the shank length.
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