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Abstract  54 

 This study aimed to develop and conduct a preliminary validation of the hitoe system, 55 

a novel smartphone application and wearable device designed to tailor exercise loads to 56 

individual exercise tolerance, with the goal of supporting personalized cardiac rehabilitation. 57 

A preliminary validation study was conducted involving 28 healthy adults (26 males, mean 58 

age 42.3 ± 11.2 years). Participants used the hitoe system to perform 13 activities, including 59 

sedentary tasks, household chores, walking, and cycle ergometer. Exercise intensity was 60 

measured in metabolic equivalents (METs) and compared with values obtained using a 61 

standard gas analyzer. Statistical analyses, including intraclass correlation coefficients (ICCs) 62 

and Bland-Altman analyses, were applied to assess the accuracy and reliability of the device. 63 

The hitoe system demonstrated satisfactory agreement with gas analyzer measurements 64 

across most activities. Bland-Altman analyses revealed that the majority of data points fell 65 

within ±2.0 METs, indicating limits of agreement. High ICCs were observed for activities 66 

such as cycle ergometer (ICC = 0.797), vacuuming the floor (ICC = 0.693), and lifting a 5 kg 67 

weight (ICC = 0.614), reflecting strong reliability. In contrast, sedentary activities such as 68 

sitting (ICC = 0.033) and desk work (ICC = 0.144) showed lower ICCs, although the absolute 69 

differences between the two methods remained within approximately 1 MET. The 70 

preliminary findings suggest that the hitoe system may be useful for assessing physical 71 
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activity intensity, particularly during higher-intensity activities. The system may offer a 72 

promising tool for real-time feedback and tailored exercise prescription in cardiac 73 

rehabilitation. Further studies involving patients with cardiovascular diseases are warranted 74 

to validate these preliminary results and enhance the system’s precision in clinical settings. 75 

 76 
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 本研究では、個別の運動耐容能に応じて運動負荷を調整し、個別化された心99 

臓リハビリテーションを支援することを目的に開発された新規スマートフォンアプ100 

リおよびウェアラブルデバイス「hitoeシステム」の開発と予備的な妥当性の検証を101 

行った。 102 

 103 

方法 104 

 本予備的検証研究では、健常成人 28名（男性 26名、平均年齢 42.3±11.2歳）105 

を対象に検証を実施した。参加者は、座位作業、家事動作、歩行、自転車エルゴメ106 

ータなど 13種類の活動を hitoeシステムを用いて実施し、活動強度（METs）は呼気107 

ガス分析装置による測定値と比較された。機器の精度および信頼性を評価するた108 

め、ICC（級内相関係数）および Bland–Altman解析を行った。 109 

 110 

結果 111 

 hitoeシステムによる測定値は多くの活動において呼気ガス分析装置と良好な112 

一致を示した。Bland–Altman解析では、大多数のデータ点が±2.0 METsの範囲内113 

（limits of agreement）に収まっていた。特に、自転車エルゴメータ（ICC = 0.797）、114 

床掃除（ICC = 0.693）、5 kg物品の持ち上げ（ICC = 0.614）などの活動で高い ICCが115 

示され、良好な信頼性が認められた。一方で、座位（ICC = 0.033）やデスクワーク116 
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（ICC = 0.144）といった低強度活動では ICCが低値を示したが、2手法間の差異は117 

概ね±1 MET以内であった。 118 

 119 

結論 120 

 本予備的検証の結果、hitoeシステムは特に高強度活動時における身体活動強121 

度の評価に有用である可能性が示唆された。また、心臓リハビリテーションにおけ122 

るリアルタイムなフィードバックと個別化された運動処方の実現に向けた有望な手123 

段となる可能性がある。今後は、心疾患患者を対象としたさらなる臨床研究を通じ124 

て、本システムの有効性および精度の検証が求められる。 125 

  126 
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Introduction 127 

 Cardiovascular diseases are increasing globally, affecting an estimated 26 million 128 

patients worldwide, making them the leading cause of death [1], [2]. Although treatments for 129 

cardiovascular diseases have evolved both in terms of pharmacological and non-130 

pharmacological interventions, a high rate of post-discharge readmission remains [3], [4]. 131 

Cardiac rehabilitation is a comprehensive intervention that includes exercise therapy [5]. 132 

According to numerous previous studies, exercise therapy tailored to individual exercise 133 

tolerance in patients with cardiovascular diseases has been reported to effectively reduce 134 

readmission and mortality rates [6], [7], [8]. 135 

 There is ample evidence regarding the effectiveness of cardiac rehabilitation; 136 

however, its implementation rate remains low in many countries. A previous study reported 137 

that when patients develop heart disease, only 33% of them undergo cardiac rehabilitation 138 

during hospitalization, and only 7% of patients participate in outpatient cardiac rehabilitation 139 

[9]. One of the reasons cited for this low implementation rate is the limited access to facilities 140 

offering cardiac rehabilitation [10]. Remote rehabilitation using smartphone applications and 141 

wearable devices has been considered a solution [10], [11]. However, to date, no device has 142 

been developed that adjusts the exercise intensity based on each patient’s exercise tolerance 143 

in this remote rehabilitation approach. 144 
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 We developed a smartphone application and wearable device (the hitoe system) that 145 

allows exercise intensity to be tailored to each patient’s exercise tolerance and provides 146 

feedback to the patient on whether they are achieving the set intensity and duration of 147 

exercise for cardiac rehabilitation. The present study aimed to develop the smartphone 148 

application and wearable device and conduct a preliminary validation of its accuracy in 149 

healthy adults prior to implementation in future studies and clinical practice involving 150 

patients with cardiovascular diseases. 151 

 152 

 153 

Materials and Methods 154 

Study setting and participants 155 

 We conducted a validation study to verify whether the developed smartphone 156 

application and wearable device could accurately measure the exercise intensity of the 157 

participants between April and December 2021. This study complied with the principles of 158 

the World Medical Association and subsequent amendments to the Declaration of Helsinki. 159 

The Yokohama City University’s Ethics Committee approved this study (approval number: 160 

B200400063). Participants in this study were healthy adults who met the following inclusion 161 

criteria: they were between 20 and 80 years of age at the time of enrollment, had no history of 162 
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cardiovascular disease, and were not undergoing any treatment for cardiovascular conditions. 163 

Cardiovascular diseases were defined to include heart failure, ischemic heart disease, 164 

arrhythmias (such as atrial fibrillation or atrioventricular block), implantation of cardiac 165 

devices (e.g., pacemakers), valvular diseases, aortic dissection, aortic aneurysm, history of 166 

cardiovascular surgery, peripheral artery disease, and other related conditions. Exclusion 167 

criteria included the presence of physical or cognitive impairments that would interfere with 168 

study procedures. Additionally, individuals with a history of non-cardiovascular diseases 169 

such as diabetes or respiratory disorders were excluded if they had physician-imposed 170 

restrictions on daily activities or exercise, or if they experienced subjective symptoms such as 171 

fatigue or shortness of breath at rest or during activities relevant to the study, including 172 

walking and housework. Participants were voluntarily recruited from staff members of 173 

Yokohama City University and Nippon Telegraph and Telephone Corporation (NTT). 174 

Informed consent was obtained from all individual participants included in this study. Given 175 

that the device had not previously been tested in any population, this preliminary validation 176 

study was conducted involving healthy adult participants prior to its intended clinical 177 

application in cardiac rehabilitation. 178 

 179 

Wearable device and smartphone application (the hitoe system) 180 
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 The wearable device and smartphone application (the hitoe system) were as follows: 181 

(i) a belt-type physical activity measurement device worn on the chest, and (ii) a smartphone 182 

application that displays the measured physical activity (Fig. 1). The belt-type physical 183 

activity measurement device consisted of two main components: a band made of functional 184 

fiber material (hitoe®, Nippon Telegraph and Telephone Corporation [NTT] and Toray 185 

Industries, Inc. Japan) that allowed for continuous measurement of biometric data, such as 186 

cardiac potentials, simply by wearing it (Fig. 1A) and a transmitter that measured posture and 187 

physical activity when connected to hitoe® (Fig. 1B and 1C). The validity and reliability of 188 

heart rate (HR) measurement by these devices has been previously established [12]. This 189 

device incorporates a commercially available iNEMO 6-degree-of-freedom inertial 190 

measurement unit (LSM6DSL) for acceleration (ACC) measurement, from which ACC data 191 

are obtained [13]. The transmitter transferred the measurement results to a smartphone 192 

application via Bluetooth. In the smartphone application, the participants checked their step 193 

count, physical activity (metabolic equivalents: METs), and HR and received feedback on 194 

whether they had achieved their personalized activity goals (Fig. 1D). Medical staff can set 195 

personalized activity goals for participants, tailored to their exercise tolerance measured 196 

during cardiopulmonary exercise testing, through a specialized website. Additionally, 197 

medical staff or others who managed application users checked the participants’ data and the 198 
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status of their goal achievement on the same specialized website. We confirmed that no 199 

itching or redness was observed during a 48-hour continuous wearing test of the device. 200 

 201 

Validation procedure 202 

 In this validation study, the participants wore the belt-type physical activity 203 

measurement device on their chest and a portable gas analyzer (mobile aeromonitor, AE-204 

100i, Minato Medical Science Co., Ltd. Japan) and performed specific activities that were set 205 

in advance. The specific activities (with 13 items) were as follows: (1) quiet supine position 206 

(reference), (2) supine position, (3) sitting, (4) desk work, (5) laundry, (6) washing dishes, (7) 207 

lifting a 5 kg weight, (8) vacuuming the floor, (9) slow walking (3.3 km/h), (10) normal 208 

walking (4.2 km/h), (11) brisk walking (6.0 km/h), (12) jogging, and (13) cycle ergometer 209 

(Table 1) [14], [15]. Given the importance of enhancing habitual physical activity in cardiac 210 

rehabilitation, postural behaviors during rest and various household tasks were also 211 

incorporated into the specific activities in the assessment [5]. All tests were conducted in a 212 

well-ventilated room, with ambient temperature maintained at approximately 22–24 °C. To 213 

minimize the influence of recent food intake on metabolic measurements, all physical 214 

activities were initiated at least 60 minutes after eating. During the experimental sessions, 215 

only water consumption was permitted; intake of other food or beverages and smoking were 216 
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strictly prohibited. Before each activity, the participants rested for 5 min in a quiet supine 217 

position until the METs and HR displayed on each device reached a resting state and then 218 

performed the specific activity. Between activities, they took a 5-min rest before proceeding 219 

to the next specific activity. The duration of each activity was 10 min in activities 1–3; 7 min 220 

in activity 4; 6 min in activities 5, 6, 8, 9, and 13; and 5 min in activities 7 and 10–12 [14]. 221 

The portable gas analyzer AE-100i was operated in breath-by-breath mode, measuring data 222 

for each breath and subsequently outputting calculated values at 10-second intervals. 223 

Accordingly, the estimated MET values derived from the hitoe-based algorithm were also 224 

calculated and output at 10-second intervals to allow for appropriate comparison. Physical 225 

activity was estimated using METs, which are generally correlated with both movement 226 

intensity and heart rate. Accordingly, two primary modeling approaches have been proposed: 227 

(1) a linear regression model based on accelerometer output, which provides detailed 228 

information on movement type and intensity [15], and (2) a heart rate–based model, which 229 

estimates METs as a function of the difference between the current and resting heart rate, 230 

reflecting cardiovascular load [16]. Since each modality captures only a partial aspect of 231 

physical activity, and their outputs are often complementary, our method integrates both 232 

accelerometry and heart rate data. For example, during ergometer exercise, heart rate 233 

increases significantly while body movement is minimal; conversely, in prolonged low-234 
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intensity activities, accelerometer data may indicate ongoing motion with minimal heart rate 235 

elevation. To effectively model energy expenditure across a broad range of daily activities, 236 

we employed a dynamic combination of both input signals. Specifically, a sigmoid weighting 237 

function was applied to transition smoothly between accelerometer- and heart rate–based 238 

estimates according to the dominant characteristics of the current activity. 1 MET is generally 239 

defined as a resting oxygen uptake of 3.5 mL/kg/min. In this study, the model includes a 240 

single fixed constant determined by the definition of 1 MET as resting energy expenditure. 241 

Thus, under conditions of zero acceleration and resting heart rate, the estimator is constrained 242 

to output exactly 1 MET. All other model parameters were derived through data-driven 243 

optimization using a mathematical fitting procedure. Four computational models were 244 

created to estimate METs from HR and ACC data tailored to (i) sedentary and household 245 

activities, (ii) mobility activities, (iii) jogging, and (iv) cycle ergometers. This classification 246 

framework is designed to address the interplay between the significance of changes in ACC 247 

and variations in HR. Through the development of these four computational models, we 248 

aimed to achieve precise calculation of MET values for activities categorized into four 249 

distinct groups. Model (i) targeted activities 2–8, Model (ii) targeted activities 9–11, Model 250 

(iii) targeted activity 12, and Model (iv) targeted activity 13. We collected METs measured 251 

using the belt-type physical activity measurement device and the portable gas analyzer for 252 
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each participant and analyzed the data to investigate how closely the two matched. We 253 

calculated the METs for the three groups from the HR and ACC obtained from the belt-type 254 

physical activity measurement device using the following formulas: 255 

 256 

 METs were calculated as 257 

MET = 1 + theta × h × rHR + (1 – theta) × a × rACC 258 

theta = sigmoid(t1 × (rHR – rACC × t2 – t3)). 259 

 260 

The sigmoid() is a sigmoid function represented by sigmoid(x) = 1/(1+e-x). rHR and rACC 261 

are representative values of HR and ACC, respectively, measured using the belt-type physical 262 

activity measurement device. rHR and rACC were calculated every 10 seconds. HR was 263 

measured using the belt-type physical activity measurement device at 1 Hz. Resting HR was 264 

assumed to be the lowest during the measurement period, including the quiet supine position 265 

period. We calculate the rHR within each 10 seconds time window as an average and subtract 266 

the resting HR. ACC is measured using the belt-type physical activity measurement device at 267 

25 Hz along the three axes. After applying a high-pass filter, we calculate the rACC as the 268 

norm of the average deviation in the previous minute for each axis. The five parameters (t1, 269 

t2, t3, h, and a) are optimized on the basis of best fit to the data. Variables t1, t2, and t3 are 270 
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parameters that adjust the degree of correlation. Variables h and a are also parameters 271 

representing the proportionality coefficients of MET to HR and ACC, respectively. We 272 

strictly enforce a constraint of 1 MET during rest with resting HR, i.e., MET = 1 when rHR = 273 

0 and rACC = 0 by this formulation with these parameters. Exercise intensity is positively 274 

correlated with both ACC and HR; however, the degree of correlation for each activity is 275 

different. 276 

 Parameter tuning was conducted using Bayesian optimization. We sought parameters 277 

that minimized the difference in MET values (mean squared error) compared with those 278 

measured using the portable gas analyzer. 279 

 For implementation, we used Python 3.7 and the following Python libraries: SciPy 280 

1.7.3 for data preprocessing, Optuna 2.2.0 for parameter exploration, and Pingouin 0.5.1 for 281 

statistical analysis. The parameter search ranges were [0.001, 0.1], [1, 100], [0, 100], [0.01, 282 

0.1], and [1, 100] for t1, t2, t3, h, and a, respectively. The exploration area was carefully 283 

chosen to cover all possible value ranges for METs, HR, and ACC. 284 

 We calculated the intraclass correlation coefficient (ICC) and correlation coefficient 285 

for each specific activity [17]. ICC (2, 1) was the preferred indicator because our purpose was 286 

to verify the accuracy of the estimations obtained from multiple participants for each activity. 287 

The magnitude of the ICC was interpreted according to the commonly used criteria, where 288 
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values less than 0.5 indicate poor reliability, values between 0.5 and 0.75 indicate moderate 289 

reliability, values between 0.75 and 0.9 indicate good reliability, and values greater than 0.9 290 

indicate excellent reliability [17]. Additionally, a Bland-Altman analysis was performed [18]. 291 

In this analysis, limits of agreement (LoA) were calculated to assess agreement between MET 292 

values estimated with the hitoe system and those obtained with the portable gas analyzer. 293 

LoA were defined as the mean difference of paired MET values ± 1.96 × SD of these 294 

differences, representing the interval within which 95 % of individual discrepancies between 295 

the two methods are expected to lie. Furthermore, an extension of the Bland-Altman analysis 296 

was implemented, incorporating a hypothesis regarding the probability distribution of error. 297 

This approach enabled the estimation of the probability that the estimated value deviates from 298 

the true value by no more than 1. 299 

 The sample size was estimated based on the reliability classification criteria for 300 

Cohen’s kappa proposed by Landis et al. [19], in which an ICC of ≥0.80 is interpreted as 301 

indicating “almost perfect agreement.” To ensure sufficient clinical applicability, the target 302 

ICC was conservatively set at 0.90. Assuming an expected ICC (r) of 0.90, a minimum 303 

acceptable ICC (r₀) of 0.80, a statistical power of 0.80, and a significance level (α) of 0.05, 304 

the required sample size was calculated to be 60 participants. However, due to considerable 305 
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challenges in participant recruitment over an extended period, the final sample size was 306 

limited to 28 participants. 307 

 308 

Results 309 

 The total number of participants included in this study was 28 (26 males, 92.9%), and 310 

their average age was 42.3 ± 11.2 years. No participants were excluded. The characteristics of 311 

the participants are shown in Table 2. Among the participants included in this study, three 312 

individuals had hypertension (10.7%) and five had dyslipidemia (17.9%). However, none of 313 

the participants had been previously diagnosed with arrhythmia or cardiovascular disease. A 314 

total of three participants had a history of Achilles tendon rupture or bronchial asthma; 315 

however, none of them had any disabilities that impaired their ability to perform physical 316 

activities. 317 

 The optimized parameters of the three computational models were as follows: for 318 

Model (i), the optimized t1, t2, t3, h, and a values were set to 0.0166, 10, 8, 0.0453, and 19, 319 

respectively; for Model (ii), the optimized t1, t2, t3, h, and a values were set to 0.0165, 21, 0, 320 

0.0218, and 24, respectively; for Model (iii), the optimized t1, t2, t3, h, and a values were set 321 

to 0.0109, 45, 0, 0.0660, 12; for Model (iv), the optimized t1, t2, t3, h, and a values were set 322 

to 0.0043, 49, 33, 0.0671, and 71, respectively. 323 
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 Table 3 presents the ICCs for the METs measured using both belt-type physical 324 

activity measurement devices and gas analyzers across specific activities. The results are 325 

presented separately for the four computational models. Table 4 displays the proportion of the 326 

absolute differences in METs measured using belt-type physical activity measurement device 327 

compared with that measured using gas analyzer falls within 1 MET. Figure 2 shows the 328 

distribution of METs measured using belt-type physical activity measurement devices and 329 

gas analyzers. Figure 3 presents the results of the Bland-Altman analysis of METs for each 330 

activity. 331 

The ICCs between the two measurement methods for activities 2–4 were not 332 

particularly high, and their 95% confidence intervals (CI) also showed considerable 333 

variablity. However, the proportion of the differences between the two methods fell within 1 334 

MET was 100%. Furthermore, the results of the Bland-Altman analysis indicated that most 335 

data points were within the limits of agreement, which were defined as around ±0.5 METs. 336 

For activities 5–8, the ICC showed relatively higher values for activities 5, 7, and 8. Although 337 

the proportion of the differences between the two measurement methods fell within 1 MET 338 

decreased compared to earlier activities, the Bland-Altman analysis revealed that most data 339 

points were within the limits of agreement, ±1.0 METs. For activities 9–12, the ICC showed 340 

a relatively high value only for activity 11 and 12. Nonetheless, the Bland-Altman analysis 341 
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indicated that, for these activities as well, most data points fell within the limits of agreement, 342 

around ±1.0 METs. For activity 13, the ICC demonstrated a remarkably high value of 0.797 343 

(95% CI 0.607–0.901), indicating excellent agreement. In Table 4, the relative differences 344 

were approximately 10–20% for activities 2–7, whereas they remained comparatively small 345 

for activities 8–13. 346 

 347 

 348 

Discussion 349 

 We conducted a validation investigation of a smartphone application and device 350 

developed to measure the intensity of physical activity conducive to cardiac rehabilitation by 351 

comparing the METs measured using this smartphone application and device to those 352 

obtained using a gas analyzer. The results indicated that the developed smartphone 353 

application and device estimates METs using three computational models based on the 354 

measured HR and gravitational ACC. While the consistency between the device and the 355 

reference method appeared generally acceptable, the level of accuracy — as reflected in the 356 

LoA and other results — may still be insufficient for precise clinical decision-making. 357 

Nonetheless, the findings suggest that such technology holds promise for enabling remote 358 
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and personalized cardiac rehabilitation, highlighting the need for further validation in clinical 359 

settings. 360 

 In the four calculation models set according to activities of daily living, the intensity 361 

of physical activity (METs) obtained with the smartphone application and device used in this 362 

study and the intensity of physical activity obtained with the gas analyzer achieved overall 363 

consistency. In the models for calculating METs in activities of daily living and mobility, 364 

while activities such as 2–4, 6, and 9 exhibited lower ICC values, other activities 365 

demonstrated ICC values of 0.5–0.6 or higher. Moreover, Bland-Altman analysis revealed 366 

that the majority of data points for all activities fell within the limits of agreement, around 367 

±0.5–1.0 METs. Previous studies have reported that measurements taken with the developed 368 

device can deviate by approximately 10–20% from the accurate values obtained using 369 

respiratory gas analyzers [20], [21], [22]. Given these findings, the models for calculating 370 

METs in activities of daily living and mobility were considered to demonstrate overall 371 

consistency between the device and the gas analyzer, supporting their potential practical 372 

applicability. Systematic bias observed during low-intensity activities (Activities 2–9) may 373 

result from reduced variability in HR and acceleration signals, limiting the model’s 374 

sensitivity. In addition, greater inter-individual variability in physiological responses at low 375 

intensities may further contribute to this trend. In the computational model for the cycle 376 
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ergometer, the ICC indicated “good” relative reliability [17]. While this suggests that the 377 

model performs consistently across measurements, it does not necessarily imply sufficient 378 

measurement accuracy for clinical application, as a LoA of ±2 METs may not fall within a 379 

clinically acceptable range. Overall, these findings highlight the need for continued research 380 

and the development of more accurate devices to enhance clinical applicability. 381 

 The device validated for accuracy in this study can set target values according to the 382 

exercise tolerance of the wearer. Furthermore, it can provide feedback on whether set 383 

exercises are being performed, suggesting their potential applicability for implementing 384 

tailored cardiac rehabilitation programs. Integrating applications and devices for monitoring 385 

physical activity into cardiac rehabilitation programs has been demonstrated to increase 386 

physical activity levels and healthy behaviors as well as reduce hospital readmission rates, 387 

according to an umbrella review that aggregated findings from systematic reviews [23]. 388 

However, among the smartphone applications available for cardiac rehabilitation, few can 389 

accurately set exercise intensities tailored to individual patients based on the test results and 390 

provide precise feedback. Furthermore, guidelines increasingly emphasize the importance of 391 

the duration and intensity of physical activity, leading to better outcomes [5], [24]. The 392 

smartphone application and device developed in this study are capable of setting target 393 

exercise intensities tailored to the patient’s exercise tolerance and can provide feedback on 394 
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whether the patient has achieved their physical activity goals in terms of both duration and 395 

intensity. This approach has the potential to maximize the effects of rehabilitation while 396 

considering the safety of individual patients. 397 

 This study had several limitations. This study focused on healthy adults with no 398 

history of cardiovascular disease. Therefore, to validate the effectiveness of this smartphone 399 

application and device, future studies should conduct prospective randomized controlled 400 

trials involving patients with cardiovascular diseases. Additionally, certain activities, such as 401 

desk work and slow walking, exhibited lower ICC values and slightly higher relative 402 

differences, which may in part be due to challenges in accurately assessing MET values 403 

under low-intensity conditions close to rest when using a breath-by-breath method, 404 

suggesting that future studies may need to reconsider or refine the measurement methodology 405 

for such conditions. These findings indicate the need for further research to enhance the 406 

accuracy of the smartphone application and device. Moreover, this study evaluated the 407 

device’s use over a relatively short period, necessitating future research to assess the risks 408 

related to device wear, such as adherence to wearing the device. In addition, the final sample 409 

size was smaller than originally planned, which may have limited the statistical power and 410 

the generalizability of the findings. Future studies with larger sample sizes are warranted to 411 

confirm and extend the present results. Another limitation is that posture was not considered 412 
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in the acquisition of resting data due to the variable orientation of the wearable sensor, which 413 

precluded accurate posture estimation using accelerometry. While the potential difference in 414 

resting MET values between seated and supine positions is acknowledged, it is likely to be 415 

minimal relative to the dynamic changes observed during exercise. Nevertheless, future 416 

studies should consider incorporating reliable posture estimation techniques to further refine 417 

the accuracy of MET-based assessments. Finally, this study did not include alternative 418 

thresholds such as ±0.5 METs, which may offer a more sensitive assessment of systematic 419 

errors across varying activity intensities. Future studies should consider incorporating other 420 

thresholds to better capture intensity-dependent deviations and to enhance interpretability in 421 

both research and clinical contexts. 422 

 In conclusion, this study suggests that the smartphone application and wearable 423 

device, the hitoe system, may offer a practical means of monitoring and adjusting exercise 424 

intensity in individuals undergoing cardiac rehabilitation. While the findings do not confirm 425 

high accuracy, they indicate a promising direction for enabling remote and personalized 426 

rehabilitation support. However, further research involving cardiovascular patients in clinical 427 

settings in needed to validate the effectiveness and reliability of such technology. 428 

 429 

 430 
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Figure Legends 539 

 540 

Fig. 1. Belt-type physical activity measurement devices and smartphone application 541 

A. hitoe® 542 

B. Transmitter 543 

C. hitoe® and transmitter (appearance) 544 

D. Smartphone application 545 

 546 

Fig. 2. Distribution of metabolic equivalents (METs) for each activity measured using the 547 

device and gas analyzer 548 

A. Computational model specialized for sedentary and household activities 549 

B. Computational model specialized for mobility activities 550 

C. Computational model specialized for jogging 551 

D. Computational model specialized for cycle ergometer 552 

Abbreviation: METs, metabolic equivalents; CPX, cardiopulmonary exercise testing 553 

 554 

The dotted lines in the figure represent the range of ± 1 MET difference between the METs 555 

measured by the device and those obtained as a reference using CPX. 556 
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 557 

Figure 3. Bland-Altman analysis of metabolic equivalents (METs) measured using the device 558 

and gas analyzer for each activity 559 
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Tables 

 

Table 1. Activities performed during the validation 

 

Number 

of 

activities 

Activities  Implementation time Contents of the activities 

1 (Reference) (Supine 

position) 

10 min Quietly lie down in the 

supine position and 

maintain rest to reset the 

condition 

2 Sedentary 

activities 

Supine 

position 

10 min Measure the basal 

metabolic rate in the 

supine position (lying 

face up) 

3 Sitting 10 min Measure the resting 

metabolic rate while 

seated in a chair 

4 Desk work 7 min Working on a computer 

5 Household 

activities 

Laundry 6 min The action of taking a T-

shirt out of the laundry 

basket and hanging it on 

a hanger to dry 



2   
 

   
 

6 Washing 

dishes 

6 min The action of washing 

dishes 

7 Lifting a 5 kg 

weight 

5 min Lift a small 5 kg 

package, take a few 

steps, and then set it 

down 

8 Vacuuming 

the floor 

6 min Clean the floor with a 

vacuum cleaner 

9 Mobility 

activities 

Slow walking 6 min Slow walking (3.3 km/h, 

55 m/min) 

10 Normal 

walking 

5 min Normal walking (4.2 

km/h, 70 m/min) 

11 Brisk walking 5 min Brisk walking (6.0 km/h, 

100 m/min) 

12 Jogging 5 min Jogging (8.0 km/h, 140 

m/min) 

13 Cycle 

ergometer 

Cycle 

ergometer 

6 min Cycle ergometer (with a 

load intensity of 

somewhat hard, around 

Borg scale 13) 
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Table 2. Characteristics of participants 

 

Variables Data 

N 28 

Male 26 (92.9%) 

Age (years) 42.3 ± 11.2 

Height (cm) 172.2 ± 6.0 

Body weight (kg) 68.8 ± 10.0 

Body mass index (kg/m2) 23.2 ± 3.1 

Smoking (never/ex/current) 19/5/4 (67.9/17.9/14.3%) 

Hypertension 3 (10.7%) 

Dyslipidemia 5 (17.9%) 

Diabetes mellitus 0 

Arrhythmia 0 

Cardiovascular diseases 0 

Respiratory diseases 1 (3.6%; bronchial asthma) 

Musculoskeletal disorders 2 (7.1%; Achilles tendon rupture) 

 

Data are presented as mean ± standard deviation or n (%). 
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Table 3. Intraclass correlation coefficients in each computational model and differences in 

metabolic equivalents (METs) for each activity measured using belt-type physical activity 

measurement device and gas analyzer 

 

 Activities of 

daily living 

Model (i) 

Mobility 

Model (ii) 

Jogging 

Model (iii) 

Cycle ergometer 

Model (iv) 

Pearson’s correlation coefficient 0.908 0.737 0.640 0.801 

ICC (95% CI) for each activity     

2. Supine position 0.062 (-0.153–

0.332) 

N/A N/A N/A 

3. Sitting 0.033 (-0.143–

0.275) 

N/A N/A N/A 

4. Desk work 0.144 (-0.105–

0.426) 

N/A N/A N/A 

5. Laundry 0.543 (0.180–

0.767) 

N/A N/A N/A 

6. Washing dishes 0.245 (-0.078–

0.544) 

N/A N/A N/A 

7. Lifting a 5 kg weight 0.614 (0.315–

0.802) 

N/A N/A N/A 

8. Vacuuming the floor 0.693 (0.440–

0.844) 

N/A N/A N/A 

9. Slow walking N/A 0.179 (-

0.216–0.518) 

N/A N/A 
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10. Normal walking N/A 0.353 (-

0.012–0.636) 

N/A N/A 

11. Brisk walking N/A 0.552 (0.226–

0.765) 

N/A N/A 

12. Jogging N/A N/A 0.620 (0.326–

0.804) 

N/A 

13. Cycle ergometer N/A N/A N/A 0.797 (0.607–

0.901) 

 

Abbreviations: ICC, intraclass correlation coefficient; N/A, not applicable 
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Table 4. The proportion of the absolute differences in metabolic equivalents (METs) measured using belt-type physical activity measurement 

device compared with that measured using gas analyzer falls within 1 MET 

 

 Mean METs 

hitoe 

Mean METs 

CPX 

VO2 

CPX 

(mL/kg/min) 

Relative 

difference 

(|hitoe – CPX| / 

CPX) 

Activities of 

daily living 

Model (i) 

Mobility Model 

(ii) 

Jogging 

Model (iii) 

Cycle ergometer 

Model (iv) 

Activities         

2. Supine 1.18 ± 0.040 1.02 ± 0.20 3.58 ± 0.71 15.70 100.00 N/A N/A N/A 

3. Sitting 1.24 ± 0.058 1.04 ± 0.20 3.65 ± 0.70 18.50 100.00 N/A N/A N/A 

4. Desk work 1.30 ± 0.082 1.10 ± 0.22 3.85 ± 0.77 18.00 100.00 N/A N/A N/A 

5. Laundry 2.15 ± 0.27 2.39 ± 0.61 8.37 ± 2.14 10.20 96.60 N/A N/A N/A 

6. Washing dishes 1.87 ± 0.21 1.57 ± 0.37 5.51 ± 1.30 18.60 98.14 N/A N/A N/A 

7. Lifting 5 kg 3.07 ± 0.52 3.04 ± 0.79 10.60 ± 2.77 10.20 91.36 N/A N/A N/A 

8. Vacuuming the floor 2.76 ± 0.53 2.85 ± 0.72 9.98 ± 2.51 3.20 95.75 N/A N/A N/A 
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9. Slow walking 2.77 ± 0.24 2.76 ± 0.56 9.65 ± 1.94 0.39 N/A 93.57 N/A N/A 

10. Normal walking 3.28 ± 0.39 3.17 ± 0.57 11.1 ± 1.98 3.48 N/A 92.78 N/A N/A 

11. Brisk walking 4.16 ± 0.61 4.13 ± 0.72 14.4 ± 2.54 0.66 N/A 88.76 N/A N/A 

12. Jogging 7.96 ± 1.27 8.11 ± 1.70 28.4 ± 5.94 1.89 N/A N/A 55.75 N/A 

13. Cycle ergometer 5.54 ± 1.54 5.61 ± 1.80 19.6 ± 6.30 1.28 N/A N/A N/A 65.26 

 

Data are presented as mean ± standard deviation or %. 

Abbreviations: METs, metabolic equivalents; CPX, cardiopulmonary exercise testing; N/A, not applicable 
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Figure 1. Belt-type physical activity measurement devices and smartphone application 

A. hitoe® 

 

B. Transmitter 

 

C. hitoe® and transmitter (appearance) 
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D. Smartphone application 
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Figure 2. Distribution of metabolic equivalents (METs) for each activity measured using the 

device and gas analyzer 

A. Computational model specialized for sedentary and household activities 

 

B. Computational model specialized for mobility activities 
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C. Computational model specialized for jogging 

 

D. Computational model specialized for cycle ergometer 
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Figure 3. Bland-Altman analysis of metabolic equivalents (METs) measured using the device 

and gas analyzer for each activity 

Activity 2. Supine position 

 

Activity 3. Sitting 

 

Activity 4. Desk work 

 



  6 
 

   
 

Activity 5. Laundry 

 

Activity 6. Washing dishes 

 

Activity 7. Lifting a 5 kg weight 
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Activity 8. Vacuuming the floor 

 

Activity 9. Slow walking 

 

Activity 10. Normal walking 
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Activity 11. Brisk walking 

 

Activity 12. Jogging 

 

Activity 13. Cycle ergometer 
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Abstract 

	This study aimed to develop and conduct a preliminary validation of the hitoe system, a novel smartphone application and wearable device designed to tailor exercise loads to individual exercise tolerance, with the goal of supporting personalized cardiac rehabilitation. A preliminary validation study was conducted involving 28 healthy adults (26 males, mean age 42.3 ± 11.2 years). Participants used the hitoe system to perform 13 activities, including sedentary tasks, household chores, walking, and cycle ergometer. Exercise intensity was measured in metabolic equivalents (METs) and compared with values obtained using a standard gas analyzer. Statistical analyses, including intraclass correlation coefficients (ICCs) and Bland-Altman analyses, were applied to assess the accuracy and reliability of the device. The hitoe system demonstrated satisfactory agreement with gas analyzer measurements across most activities. Bland-Altman analyses revealed that the majority of data points fell within ±2.0 METs, indicating limits of agreement. High ICCs were observed for activities such as cycle ergometer (ICC = 0.797), vacuuming the floor (ICC = 0.693), and lifting a 5 kg weight (ICC = 0.614), reflecting strong reliability. In contrast, sedentary activities such as sitting (ICC = 0.033) and desk work (ICC = 0.144) showed lower ICCs, although the absolute differences between the two methods remained within approximately 1 MET. The preliminary findings suggest that the hitoe system may be useful for assessing physical activity intensity, particularly during higher-intensity activities. The system may offer a promising tool for real-time feedback and tailored exercise prescription in cardiac rehabilitation. Further studies involving patients with cardiovascular diseases are warranted to validate these preliminary results and enhance the system’s precision in clinical settings.
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hitoeシステムの妥当性の検証：心臓リハビリテーションにおける身体活動レベルをモニタリングするスマートフォンアプリケーションおよびウェアラブルデバイス
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抄録

目的

	本研究では、個別の運動耐容能に応じて運動負荷を調整し、個別化された心臓リハビリテーションを支援することを目的に開発された新規スマートフォンアプリおよびウェアラブルデバイス「hitoeシステム」の開発と予備的な妥当性の検証を行った。



方法

	本予備的検証研究では、健常成人28名（男性26名、平均年齢42.3±11.2歳）を対象に検証を実施した。参加者は、座位作業、家事動作、歩行、自転車エルゴメータなど13種類の活動をhitoeシステムを用いて実施し、活動強度（METs）は呼気ガス分析装置による測定値と比較された。機器の精度および信頼性を評価するため、ICC（級内相関係数）およびBland–Altman解析を行った。



結果

	hitoeシステムによる測定値は多くの活動において呼気ガス分析装置と良好な一致を示した。Bland–Altman解析では、大多数のデータ点が±2.0 METsの範囲内（limits of agreement）に収まっていた。特に、自転車エルゴメータ（ICC = 0.797）、床掃除（ICC = 0.693）、5 kg物品の持ち上げ（ICC = 0.614）などの活動で高いICCが示され、良好な信頼性が認められた。一方で、座位（ICC = 0.033）やデスクワーク（ICC = 0.144）といった低強度活動ではICCが低値を示したが、2手法間の差異は概ね±1 MET以内であった。



結論

	本予備的検証の結果、hitoeシステムは特に高強度活動時における身体活動強度の評価に有用である可能性が示唆された。また、心臓リハビリテーションにおけるリアルタイムなフィードバックと個別化された運動処方の実現に向けた有望な手段となる可能性がある。今後は、心疾患患者を対象としたさらなる臨床研究を通じて、本システムの有効性および精度の検証が求められる。



Introduction

	Cardiovascular diseases are increasing globally, affecting an estimated 26 million patients worldwide, making them the leading cause of death [1], [2]. Although treatments for cardiovascular diseases have evolved both in terms of pharmacological and non-pharmacological interventions, a high rate of post-discharge readmission remains [3], [4]. Cardiac rehabilitation is a comprehensive intervention that includes exercise therapy [5]. According to numerous previous studies, exercise therapy tailored to individual exercise tolerance in patients with cardiovascular diseases has been reported to effectively reduce readmission and mortality rates [6], [7], [8].

	There is ample evidence regarding the effectiveness of cardiac rehabilitation; however, its implementation rate remains low in many countries. A previous study reported that when patients develop heart disease, only 33% of them undergo cardiac rehabilitation during hospitalization, and only 7% of patients participate in outpatient cardiac rehabilitation [9]. One of the reasons cited for this low implementation rate is the limited access to facilities offering cardiac rehabilitation [10]. Remote rehabilitation using smartphone applications and wearable devices has been considered a solution [10], [11]. However, to date, no device has been developed that adjusts the exercise intensity based on each patient’s exercise tolerance in this remote rehabilitation approach.

	We developed a smartphone application and wearable device (the hitoe system) that allows exercise intensity to be tailored to each patient’s exercise tolerance and provides feedback to the patient on whether they are achieving the set intensity and duration of exercise for cardiac rehabilitation. The present study aimed to develop the smartphone application and wearable device and conduct a preliminary validation of its accuracy in healthy adults prior to implementation in future studies and clinical practice involving patients with cardiovascular diseases.





Materials and Methods

Study setting and participants

	We conducted a validation study to verify whether the developed smartphone application and wearable device could accurately measure the exercise intensity of the participants between April and December 2021. This study complied with the principles of the World Medical Association and subsequent amendments to the Declaration of Helsinki. The Yokohama City University’s Ethics Committee approved this study (approval number: B200400063). Participants in this study were healthy adults who met the following inclusion criteria: they were between 20 and 80 years of age at the time of enrollment, had no history of cardiovascular disease, and were not undergoing any treatment for cardiovascular conditions. Cardiovascular diseases were defined to include heart failure, ischemic heart disease, arrhythmias (such as atrial fibrillation or atrioventricular block), implantation of cardiac devices (e.g., pacemakers), valvular diseases, aortic dissection, aortic aneurysm, history of cardiovascular surgery, peripheral artery disease, and other related conditions. Exclusion criteria included the presence of physical or cognitive impairments that would interfere with study procedures. Additionally, individuals with a history of non-cardiovascular diseases such as diabetes or respiratory disorders were excluded if they had physician-imposed restrictions on daily activities or exercise, or if they experienced subjective symptoms such as fatigue or shortness of breath at rest or during activities relevant to the study, including walking and housework. Participants were voluntarily recruited from staff members of Yokohama City University and Nippon Telegraph and Telephone Corporation (NTT). Informed consent was obtained from all individual participants included in this study. Given that the device had not previously been tested in any population, this preliminary validation study was conducted involving healthy adult participants prior to its intended clinical application in cardiac rehabilitation.



Wearable device and smartphone application (the hitoe system)

	The wearable device and smartphone application (the hitoe system) were as follows: (i) a belt-type physical activity measurement device worn on the chest, and (ii) a smartphone application that displays the measured physical activity (Fig. 1). The belt-type physical activity measurement device consisted of two main components: a band made of functional fiber material (hitoe®, Nippon Telegraph and Telephone Corporation [NTT] and Toray Industries, Inc. Japan) that allowed for continuous measurement of biometric data, such as cardiac potentials, simply by wearing it (Fig. 1A) and a transmitter that measured posture and physical activity when connected to hitoe® (Fig. 1B and 1C). The validity and reliability of heart rate (HR) measurement by these devices has been previously established [12]. This device incorporates a commercially available iNEMO 6-degree-of-freedom inertial measurement unit (LSM6DSL) for acceleration (ACC) measurement, from which ACC data are obtained [13]. The transmitter transferred the measurement results to a smartphone application via Bluetooth. In the smartphone application, the participants checked their step count, physical activity (metabolic equivalents: METs), and HR and received feedback on whether they had achieved their personalized activity goals (Fig. 1D). Medical staff can set personalized activity goals for participants, tailored to their exercise tolerance measured during cardiopulmonary exercise testing, through a specialized website. Additionally, medical staff or others who managed application users checked the participants’ data and the status of their goal achievement on the same specialized website. We confirmed that no itching or redness was observed during a 48-hour continuous wearing test of the device.



Validation procedure

	In this validation study, the participants wore the belt-type physical activity measurement device on their chest and a portable gas analyzer (mobile aeromonitor, AE-100i, Minato Medical Science Co., Ltd. Japan) and performed specific activities that were set in advance. The specific activities (with 13 items) were as follows: (1) quiet supine position (reference), (2) supine position, (3) sitting, (4) desk work, (5) laundry, (6) washing dishes, (7) lifting a 5 kg weight, (8) vacuuming the floor, (9) slow walking (3.3 km/h), (10) normal walking (4.2 km/h), (11) brisk walking (6.0 km/h), (12) jogging, and (13) cycle ergometer (Table 1) [14], [15]. Given the importance of enhancing habitual physical activity in cardiac rehabilitation, postural behaviors during rest and various household tasks were also incorporated into the specific activities in the assessment [5]. All tests were conducted in a well-ventilated room, with ambient temperature maintained at approximately 22–24 °C. To minimize the influence of recent food intake on metabolic measurements, all physical activities were initiated at least 60 minutes after eating. During the experimental sessions, only water consumption was permitted; intake of other food or beverages and smoking were strictly prohibited. Before each activity, the participants rested for 5 min in a quiet supine position until the METs and HR displayed on each device reached a resting state and then performed the specific activity. Between activities, they took a 5-min rest before proceeding to the next specific activity. The duration of each activity was 10 min in activities 1–3; 7 min in activity 4; 6 min in activities 5, 6, 8, 9, and 13; and 5 min in activities 7 and 10–12 [14]. The portable gas analyzer AE-100i was operated in breath-by-breath mode, measuring data for each breath and subsequently outputting calculated values at 10-second intervals. Accordingly, the estimated MET values derived from the hitoe-based algorithm were also calculated and output at 10-second intervals to allow for appropriate comparison. Physical activity was estimated using METs, which are generally correlated with both movement intensity and heart rate. Accordingly, two primary modeling approaches have been proposed: (1) a linear regression model based on accelerometer output, which provides detailed information on movement type and intensity [15], and (2) a heart rate–based model, which estimates METs as a function of the difference between the current and resting heart rate, reflecting cardiovascular load [16]. Since each modality captures only a partial aspect of physical activity, and their outputs are often complementary, our method integrates both accelerometry and heart rate data. For example, during ergometer exercise, heart rate increases significantly while body movement is minimal; conversely, in prolonged low-intensity activities, accelerometer data may indicate ongoing motion with minimal heart rate elevation. To effectively model energy expenditure across a broad range of daily activities, we employed a dynamic combination of both input signals. Specifically, a sigmoid weighting function was applied to transition smoothly between accelerometer- and heart rate–based estimates according to the dominant characteristics of the current activity. 1 MET is generally defined as a resting oxygen uptake of 3.5 mL/kg/min. In this study, the model includes a single fixed constant determined by the definition of 1 MET as resting energy expenditure. Thus, under conditions of zero acceleration and resting heart rate, the estimator is constrained to output exactly 1 MET. All other model parameters were derived through data-driven optimization using a mathematical fitting procedure. Four computational models were created to estimate METs from HR and ACC data tailored to (i) sedentary and household activities, (ii) mobility activities, (iii) jogging, and (iv) cycle ergometers. This classification framework is designed to address the interplay between the significance of changes in ACC and variations in HR. Through the development of these four computational models, we aimed to achieve precise calculation of MET values for activities categorized into four distinct groups. Model (i) targeted activities 2–8, Model (ii) targeted activities 9–11, Model (iii) targeted activity 12, and Model (iv) targeted activity 13. We collected METs measured using the belt-type physical activity measurement device and the portable gas analyzer for each participant and analyzed the data to investigate how closely the two matched. We calculated the METs for the three groups from the HR and ACC obtained from the belt-type physical activity measurement device using the following formulas:



	METs were calculated as

MET = 1 + theta × h × rHR + (1 – theta) × a × rACC

theta = sigmoid(t1 × (rHR – rACC × t2 – t3)).



The sigmoid() is a sigmoid function represented by sigmoid(x) = 1/(1+e-x). rHR and rACC are representative values of HR and ACC, respectively, measured using the belt-type physical activity measurement device. rHR and rACC were calculated every 10 seconds. HR was measured using the belt-type physical activity measurement device at 1 Hz. Resting HR was assumed to be the lowest during the measurement period, including the quiet supine position period. We calculate the rHR within each 10 seconds time window as an average and subtract the resting HR. ACC is measured using the belt-type physical activity measurement device at 25 Hz along the three axes. After applying a high-pass filter, we calculate the rACC as the norm of the average deviation in the previous minute for each axis. The five parameters (t1, t2, t3, h, and a) are optimized on the basis of best fit to the data. Variables t1, t2, and t3 are parameters that adjust the degree of correlation. Variables h and a are also parameters representing the proportionality coefficients of MET to HR and ACC, respectively. We strictly enforce a constraint of 1 MET during rest with resting HR, i.e., MET = 1 when rHR = 0 and rACC = 0 by this formulation with these parameters. Exercise intensity is positively correlated with both ACC and HR; however, the degree of correlation for each activity is different.

	Parameter tuning was conducted using Bayesian optimization. We sought parameters that minimized the difference in MET values (mean squared error) compared with those measured using the portable gas analyzer.

	For implementation, we used Python 3.7 and the following Python libraries: SciPy 1.7.3 for data preprocessing, Optuna 2.2.0 for parameter exploration, and Pingouin 0.5.1 for statistical analysis. The parameter search ranges were [0.001, 0.1], [1, 100], [0, 100], [0.01, 0.1], and [1, 100] for t1, t2, t3, h, and a, respectively. The exploration area was carefully chosen to cover all possible value ranges for METs, HR, and ACC.

	We calculated the intraclass correlation coefficient (ICC) and correlation coefficient for each specific activity [17]. ICC (2, 1) was the preferred indicator because our purpose was to verify the accuracy of the estimations obtained from multiple participants for each activity. The magnitude of the ICC was interpreted according to the commonly used criteria, where values less than 0.5 indicate poor reliability, values between 0.5 and 0.75 indicate moderate reliability, values between 0.75 and 0.9 indicate good reliability, and values greater than 0.9 indicate excellent reliability [17]. Additionally, a Bland-Altman analysis was performed [18]. In this analysis, limits of agreement (LoA) were calculated to assess agreement between MET values estimated with the hitoe system and those obtained with the portable gas analyzer. LoA were defined as the mean difference of paired MET values ± 1.96 × SD of these differences, representing the interval within which 95 % of individual discrepancies between the two methods are expected to lie. Furthermore, an extension of the Bland-Altman analysis was implemented, incorporating a hypothesis regarding the probability distribution of error. This approach enabled the estimation of the probability that the estimated value deviates from the true value by no more than 1.

	The sample size was estimated based on the reliability classification criteria for Cohen’s kappa proposed by Landis et al. [19], in which an ICC of ≥0.80 is interpreted as indicating “almost perfect agreement.” To ensure sufficient clinical applicability, the target ICC was conservatively set at 0.90. Assuming an expected ICC (r) of 0.90, a minimum acceptable ICC (r₀) of 0.80, a statistical power of 0.80, and a significance level (α) of 0.05, the required sample size was calculated to be 60 participants. However, due to considerable challenges in participant recruitment over an extended period, the final sample size was limited to 28 participants.



Results

	The total number of participants included in this study was 28 (26 males, 92.9%), and their average age was 42.3 ± 11.2 years. No participants were excluded. The characteristics of the participants are shown in Table 2. Among the participants included in this study, three individuals had hypertension (10.7%) and five had dyslipidemia (17.9%). However, none of the participants had been previously diagnosed with arrhythmia or cardiovascular disease. A total of three participants had a history of Achilles tendon rupture or bronchial asthma; however, none of them had any disabilities that impaired their ability to perform physical activities.

	The optimized parameters of the three computational models were as follows: for Model (i), the optimized t1, t2, t3, h, and a values were set to 0.0166, 10, 8, 0.0453, and 19, respectively; for Model (ii), the optimized t1, t2, t3, h, and a values were set to 0.0165, 21, 0, 0.0218, and 24, respectively; for Model (iii), the optimized t1, t2, t3, h, and a values were set to 0.0109, 45, 0, 0.0660, 12; for Model (iv), the optimized t1, t2, t3, h, and a values were set to 0.0043, 49, 33, 0.0671, and 71, respectively.

	Table 3 presents the ICCs for the METs measured using both belt-type physical activity measurement devices and gas analyzers across specific activities. The results are presented separately for the four computational models. Table 4 displays the proportion of the absolute differences in METs measured using belt-type physical activity measurement device compared with that measured using gas analyzer falls within 1 MET. Figure 2 shows the distribution of METs measured using belt-type physical activity measurement devices and gas analyzers. Figure 3 presents the results of the Bland-Altman analysis of METs for each activity.

The ICCs between the two measurement methods for activities 2–4 were not particularly high, and their 95% confidence intervals (CI) also showed considerable variablity. However, the proportion of the differences between the two methods fell within 1 MET was 100%. Furthermore, the results of the Bland-Altman analysis indicated that most data points were within the limits of agreement, which were defined as around ±0.5 METs. For activities 5–8, the ICC showed relatively higher values for activities 5, 7, and 8. Although the proportion of the differences between the two measurement methods fell within 1 MET decreased compared to earlier activities, the Bland-Altman analysis revealed that most data points were within the limits of agreement, ±1.0 METs. For activities 9–12, the ICC showed a relatively high value only for activity 11 and 12. Nonetheless, the Bland-Altman analysis indicated that, for these activities as well, most data points fell within the limits of agreement, around ±1.0 METs. For activity 13, the ICC demonstrated a remarkably high value of 0.797 (95% CI 0.607–0.901), indicating excellent agreement. In Table 4, the relative differences were approximately 10–20% for activities 2–7, whereas they remained comparatively small for activities 8–13.





Discussion

	We conducted a validation investigation of a smartphone application and device developed to measure the intensity of physical activity conducive to cardiac rehabilitation by comparing the METs measured using this smartphone application and device to those obtained using a gas analyzer. The results indicated that the developed smartphone application and device estimates METs using three computational models based on the measured HR and gravitational ACC. While the consistency between the device and the reference method appeared generally acceptable, the level of accuracy — as reflected in the LoA and other results — may still be insufficient for precise clinical decision-making. Nonetheless, the findings suggest that such technology holds promise for enabling remote and personalized cardiac rehabilitation, highlighting the need for further validation in clinical settings.

	In the four calculation models set according to activities of daily living, the intensity of physical activity (METs) obtained with the smartphone application and device used in this study and the intensity of physical activity obtained with the gas analyzer achieved overall consistency. In the models for calculating METs in activities of daily living and mobility, while activities such as 2–4, 6, and 9 exhibited lower ICC values, other activities demonstrated ICC values of 0.5–0.6 or higher. Moreover, Bland-Altman analysis revealed that the majority of data points for all activities fell within the limits of agreement, around ±0.5–1.0 METs. Previous studies have reported that measurements taken with the developed device can deviate by approximately 10–20% from the accurate values obtained using respiratory gas analyzers [20], [21], [22]. Given these findings, the models for calculating METs in activities of daily living and mobility were considered to demonstrate overall consistency between the device and the gas analyzer, supporting their potential practical applicability. Systematic bias observed during low-intensity activities (Activities 2–9) may result from reduced variability in HR and acceleration signals, limiting the model’s sensitivity. In addition, greater inter-individual variability in physiological responses at low intensities may further contribute to this trend. In the computational model for the cycle ergometer, the ICC indicated “good” relative reliability [17]. While this suggests that the model performs consistently across measurements, it does not necessarily imply sufficient measurement accuracy for clinical application, as a LoA of ±2 METs may not fall within a clinically acceptable range. Overall, these findings highlight the need for continued research and the development of more accurate devices to enhance clinical applicability.

	The device validated for accuracy in this study can set target values according to the exercise tolerance of the wearer. Furthermore, it can provide feedback on whether set exercises are being performed, suggesting their potential applicability for implementing tailored cardiac rehabilitation programs. Integrating applications and devices for monitoring physical activity into cardiac rehabilitation programs has been demonstrated to increase physical activity levels and healthy behaviors as well as reduce hospital readmission rates, according to an umbrella review that aggregated findings from systematic reviews [23]. However, among the smartphone applications available for cardiac rehabilitation, few can accurately set exercise intensities tailored to individual patients based on the test results and provide precise feedback. Furthermore, guidelines increasingly emphasize the importance of the duration and intensity of physical activity, leading to better outcomes [5], [24]. The smartphone application and device developed in this study are capable of setting target exercise intensities tailored to the patient’s exercise tolerance and can provide feedback on whether the patient has achieved their physical activity goals in terms of both duration and intensity. This approach has the potential to maximize the effects of rehabilitation while considering the safety of individual patients.

	This study had several limitations. This study focused on healthy adults with no history of cardiovascular disease. Therefore, to validate the effectiveness of this smartphone application and device, future studies should conduct prospective randomized controlled trials involving patients with cardiovascular diseases. Additionally, certain activities, such as desk work and slow walking, exhibited lower ICC values and slightly higher relative differences, which may in part be due to challenges in accurately assessing MET values under low-intensity conditions close to rest when using a breath-by-breath method, suggesting that future studies may need to reconsider or refine the measurement methodology for such conditions. These findings indicate the need for further research to enhance the accuracy of the smartphone application and device. Moreover, this study evaluated the device’s use over a relatively short period, necessitating future research to assess the risks related to device wear, such as adherence to wearing the device. In addition, the final sample size was smaller than originally planned, which may have limited the statistical power and the generalizability of the findings. Future studies with larger sample sizes are warranted to confirm and extend the present results. Another limitation is that posture was not considered in the acquisition of resting data due to the variable orientation of the wearable sensor, which precluded accurate posture estimation using accelerometry. While the potential difference in resting MET values between seated and supine positions is acknowledged, it is likely to be minimal relative to the dynamic changes observed during exercise. Nevertheless, future studies should consider incorporating reliable posture estimation techniques to further refine the accuracy of MET-based assessments. Finally, this study did not include alternative thresholds such as ±0.5 METs, which may offer a more sensitive assessment of systematic errors across varying activity intensities. Future studies should consider incorporating other thresholds to better capture intensity-dependent deviations and to enhance interpretability in both research and clinical contexts.

	In conclusion, this study suggests that the smartphone application and wearable device, the hitoe system, may offer a practical means of monitoring and adjusting exercise intensity in individuals undergoing cardiac rehabilitation. While the findings do not confirm high accuracy, they indicate a promising direction for enabling remote and personalized rehabilitation support. However, further research involving cardiovascular patients in clinical settings in needed to validate the effectiveness and reliability of such technology.
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Figure Legends



Fig. 1. Belt-type physical activity measurement devices and smartphone application

A. hitoe®

B. Transmitter

C. hitoe® and transmitter (appearance)

D. Smartphone application



Fig. 2. Distribution of metabolic equivalents (METs) for each activity measured using the device and gas analyzer

A. Computational model specialized for sedentary and household activities

B. Computational model specialized for mobility activities

C. Computational model specialized for jogging

D. Computational model specialized for cycle ergometer

Abbreviation: METs, metabolic equivalents; CPX, cardiopulmonary exercise testing



The dotted lines in the figure represent the range of ± 1 MET difference between the METs measured by the device and those obtained as a reference using CPX.



Figure 3. Bland-Altman analysis of metabolic equivalents (METs) measured using the device and gas analyzer for each activity

		

		

		







