Accepted Manuscript

Title page

Regular Article

Title: Effects of acute oral lactate supplementation on energy metabolism in humans

Authors: Kohei Seike ^{1,2,*}, Yumiko Takahashi², Hideo Hatta²

Affiliations:

¹ Department of Sports Science, Kyushu Kyoritsu University, 1-8 Jiyugaoka, Yahatanishi-

ku, Kitakyushu, Fukuoka 8078585, Japan

² Department of Sports Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku,

Tokyo 1538902, Japan

*Corresponding Author: Kohei Seike

Department of Sports Science, Kyushu Kyoritsu University, 1-8 Jiyugaoka, Yahatanishi-

ku, Kitakyushu, Fukuoka 8078585, Japan. E-mail: kseike302043j@gmail.com, Phone:

[+81] 90-3538-2326, Fax: [+81] 93-693-3432.

Number of Figures: 3

Number of Tables: 1

Running title: Effects of lactate supplementation in humans

Abstract

Lactate administration has been suggested to affect energy metabolism by acting as an energy fuel and/or exhibiting various physiological responses. Although some previous studies have found that the intravenous infusion of lactate might increase energy expenditure, the effect of oral supplementation is unknown. In this study, we investigated the effects of acute oral lactate supplementation on energy metabolism during rest and exercise. Twelve healthy subjects (ten men and two women, average age of 21.2 ± 0.8 years) participated in this single-blind, placebo-controlled, randomized crossover study. All subjects received two different supplements: supplements containing 1115 mg of lactate (LAC) and placebo supplements consisting of the same mass of glucose as the supplements in LAC (PLA). 1 hour after ingesting the supplements, they performed cycling exercise (unloaded, 70 rpm, 30 min). Measurements taken included oxygen consumption, blood lactate and glucose concentrations, heart rate, rating of perceived exertion, and gastric discomfort level. The results showed that the area under the curve for oxygen consumption during rest was significantly higher with LAC than with PLA treatment (LAC: 41.3 ± 3.7 ml/kg vs. PLA: 37.2 ± 5.5 ml/kg, p < 0.01). By contrast, no significant differences were observed between LAC and PLA treatments in any of the measurements during exercise. In

conclusion, acute oral lactate supplementation increased oxygen consumption during rest.

Keywords

lactate supplementation, oxygen consumption, energy metabolism

タイトル

単回の乳酸の経口摂取がヒトのエネルギー代謝に与える影響

著者

清家空併 1.2、高橋祐美子 2、八田秀雄 2

所属

1九州共立大学スポーツ学部

2 東京大学身体運動科学研究室

要旨

乳酸の投与はエネルギー源としての作用や様々な生理的反応を示すことによって、エネ ルギー代謝に影響を及ぼす可能性があることが示唆されている。いくつかの先行研究にお いて乳酸の静脈投与がエネルギー消費量を増加させる可能性が示唆されているが、経口摂 取による影響は分かっていない。本研究ではヒトを対象に、単回の乳酸の経口摂取が安静時 および運動時のエネルギー代謝に与える影響を調べた。健常な 12 名(男性 10 名と女性 2 名、平均年齢 21.2 ± 0.8 歳)を対象にしたランダム化交差試験(単盲検)とした。乳酸 (1115mg)を含有するサブリメントを摂取する条件(乳酸条件)および、乳酸条件のサブ リメントと同重量のブドウ糖であるプラセボサプリメントを摂取する条件(プラセボ条件) の 2 試行を行った。サブリメントの摂取から 1 時間後に、被験者は自転車運動(無負荷、 70rpm、30 分間)を開始した。測定項目は酸素消費量、血中乳酸濃度、血中グルコース濃 度、心拍数、主観的運動強度、胃部不快感とした。その結果、安静時の酸素消費量の曲線化 面積については、プラセボ条件と比べて乳酸条件で有意に高値を示した(乳酸条件: 41.3 ± 3.7 ml/kg vs.プラセボ条件: 37.2 ± 5.5 ml/kg, p < 0.01)。一方で、運動時にはいずれの項目 においても両条件間で有意差は認められなかった。結論として、単回の乳酸の経口摂取は安 静時の酸素消費量を増加させた。

キーワード

乳酸摂取、酸素消費、エネルギー代謝

1 Introduction

2 Lactate has classically been considered a product of glycolysis that causes fatigue, but its interpretation has been changing in recent years ¹⁻³⁾. Rather, lactate is a readily 3 available fuel as an oxidative substrate and is even preferred over glucose^{1,4-6)}. In addition, 4 it has been shown that lactate induces various physiological responses in the whole body 5 ⁷⁾. For example, studies have reported that lactate administration enhances the metabolic 6 buffering capacity, such as increasing blood bicarbonate^{8, 9)}, and increases pulmonary 7 ventilation and cardiac output 7, 10, 11). These roles of lactate as an energy fuel and in 8 9 exerting physiological actions suggest the potential benefit of lactate supplementation. 10 When lactate is consumed orally, it is rapidly absorbed primarily in the upper intestine through sodium-coupled intestinal lactate transporters ¹⁾, and after reaching the 11 bloodstream, it is either oxidized primarily in skeletal muscle or converted into glucose 12 in the liver ¹²). Especially during exercise, most intravenously infused lactate is 13 metabolized in skeletal muscle ^{12, 13}. Given the possibility of glycogen sparing ¹⁴⁻¹⁶ and 14 the metabolic buffering capacity⁸⁾ associated with lactate administration, earlier 15 16 researchers have investigated whether the ingestion of polylactate, which is an easily ingestible form of lactate, enhances athletic performance^{8, 17-19}. Recently, some studies 17have also investigated the effects of commercially available supplements containing low-18

dose lactate on athletic performance ²⁰⁻²³. However, fundamental knowledge about the
effects of lactate supplementation on energy metabolism is lacking.

In some studies using intravenous infusion, lactate increased oxygen consumption or 21 energy expenditure by 3%–11% during rest or exercise in humans^{6, 24-28}, termed by some 22 as the thermic effect of lactate based on changes in the results of breath gas analysis²⁴⁻²⁶. 23 24 However, no evidence shows that oral supplementation with lactate increases energy expenditure in humans. Unlike intravenous infusion, the effect on energy expenditure 25 may not be reproduced because oral supplementation involves the process of absorption 26 27 from the digestive tract. Ensuring energy expenditure through exercise is a typical prescription for preventing obesity^{29, 30}, but there are cases in which sufficient exercise 28 sometimes cannot be executed, such as lack of time³¹⁾ and low physical capacity³²⁾. If 29 oral lactate supplementation increases energy expenditure, it may contribute to helping 30 31 ensure energy expenditure. In this study, we investigated the effects of acute oral lactate 32 supplementation on energy metabolism during rest and exercise.

33

34 Materials and Methods

35 Subjects

36 The present study subjects comprised ten men and two women. The subjects had an

37	average age of 21.2 \pm 0.8 years, body mass of 64.6 \pm 8.1 kg, height of 171.3 \pm 6.0 cm,
38	and body fat of $17.2 \pm 3.8\%$. The sample size calculation was performed using G*Power
39	3.1.9.7. We used previously published results ³³ that determined a significant effect of
40	ingestion of thermogenic supplement on oxygen consumption, where effect size delta
41	distributed approximately 1.0 during rest and 0.6 during low-intensity exercise. Assuming
42	a two-tailed paired t-test with a significance level of 5%, and a power of 80%, the required
43	sample size was calculated to be 10 for a rest condition and 24 for an exercise condition.
44	Subjects were informed about the risks and discomforts associated with participation and
45	thereafter provided written informed consent. This study was approved by the ethics
46	committee of Kyushu Kyoritsu University (2022-07).
47	
48	Experimental design
49	A randomized, single-blind crossover study was conducted. The subjects visited the
50	laboratory on two separate occasions. On the day of the experiment, the subjects started
51	the exercise 1 hour after ingesting either the lactate supplement (LAC) or the placebo
52	supplement (PLA). Those treatment orders were randomized, and subjects were blinded

53 to the treatment order until the study ended. The average washout period was 8.0 ± 6.7

54 days.

55	The subjects were also asked to refrain from strenuous exercise and alcohol on the day
56	before the experiment. Additionally, subjects were asked to share a photographic record
57	of their dinner the day before the experiment. On the day of the experiment, the subjects
58	were instructed to arrive at the laboratory without having consumed any food or drink
59	except for water after waking up. Three hours prior to the exercise, the subjects consumed
60	a prescribed breakfast upon arrival at the laboratory. The prescribed breakfast was 636
61	kcal (including 13% protein, 3% fat, and 84% carbohydrate) and consisted of white rice
62	and canned tuna. After the meal, the subjects remained in the sitting position until the
63	start of exercise. Exercise execution started between the hours of 10:00 am and 1:00 pm.
64	Each subject completed both the LAC and PLA experiments on the same time schedule.
65	To ensure the validity of investigations into the effects of exogenous lactate, in the present
66	study, we chose low-intensity exercise since endogenous lactate production during
67	exercise would be minimized. Regarding the exercise protocol, subjects performed low-
68	intensity cycling exercise (unloaded, 70 rpm, 30 min) using a cycle ergometer (Corival
69	V2; Lode BV, Groningen, Netherlands). It is common to set the same relative intensity
70	based on the results of VO ₂ max measurement. However, VO ₂ max measurement requires
71	rigorous effort, and it is difficult to obtain accurate values because it is affected by factors
72	such as the subject's motivation ³⁴). Therefore, the intensity of the cycling exercise in the

present study was matched to be absolute intensity (unloaded). The position of the saddle
was replicated for both experiments.

75

77

76 Measurements

PLA environments were 21.5 ± 1.1 °C and $49.3 \pm 5.5\%$, and 21.3 ± 1.4 °C and 45.7 ± 79 7.4%, respectively. On the first experimental day, anthropometric data were recorded, 80 including height and body mass, as well as body composition using bioelectrical

The laboratory environment's temperature and humidity were recorded. The LAC and

81 impedance (MC-780; TANITA, Tokyo, Japan).

82 Figure 1 shows a schematic representation of the experiment. From 10 min before 83 exercise until the end of the 30-min exercise session, the subjects wore a facemask, and their exhaled gases were analyzed for oxygen consumption averaged over 60 s, using 84 indirect calorimetry (AR-1; ARCO SYSTEM, Chiba, Japan). The blood lactate and 85 86 glucose concentrations, heart rate, rating of perceived exertion (RPE), and gastric discomfort level were measured at rest before exercise (at 0 min) and during exercise (at 87 10, 20, and 30 min). Blood lactate and glucose concentrations were measured using 88 89 equipment (Lactate pro 2; ARKRAY, Kyoto, Japan, and GLUCOCARD PlusCare; ARKRAY, Kyoto, Japan, respectively) that measures their blood concentrations from a 90

91	small blood sample from a fingertip capillary. Heart rate was measured using a heart rate
92	sensor with a chest strap (Polar H10; Polar Electro, Kempele, Finland). RPE was recorded
93	using the Borg scale. The gastric discomfort level was recorded using a visual analog
94	scale. The subjects indicated the severity of symptoms on a scale from 0 mm to 100 mm,
95	with 0 mm being "no symptom" and 100 mm being "severe symptom".
96	
97	Supplementation
98	As in previous studies ²⁰⁻²³ , subjects received powdered supplements containing 1115
99	mg of lactate from a combination of calcium lactate monohydrate and magnesium lactate
100	dihydrate (Sportlegs; Sport Specifics, Longmont, USA) in accordance with the
101	manufacturer's recommended dosage in the LAC treatment. In the PLA treatment,
102	subjects received a placebo supplement consisting of the same mass of glucose (about
103	1860 mg) as the supplements in the LAC treatment. The lactate and placebo supplements
104	were indistinguishable via visual sensation and gustation because both were packaged in
105	the same-sized gelatin capsules. On the basis of previous studies ^{12, 21-23, 35, 36} , it was
106	decided that the supplements would be ingested 1 hour before the exercise.
107	

108 <u>Statistical analysis</u>

109	All data are expressed as the mean \pm standard deviation (SD). We used BellCurve for
110	Excel (Social Survey Research Information, Tokyo, Japan) for the analysis.
111	Significant differences in values over time and treatments were determined using a two-
112	way repeated measures analysis of variance (ANOVA). When differences were found to
113	be significant for the main effect or interaction, comparisons were made using a
114	Bonferroni test. The area under the curve (AUC) was calculated for each subject using
115	the trapezoidal method. A paired t-test was used to determine AUC differences between
116	the two treatments. Statistical significance was defined as $p < 0.05$.
117	

118 **Results**

119 Oxygen consumption

Figure 2-a shows the oxygen consumption averaged every 10 min. There was no main effect of treatment or interaction on oxygen consumption, but there was a significant main effect of time (time: p < 0.01, Fig. 2-a). The values at each point during exercise were significantly higher than the value during rest in both treatments (all p < 0.01). The AUC for oxygen consumption during rest was significantly higher in the LAC treatment than in the PLA treatment (p < 0.01, Fig. 2-b). By contrast, no significant difference was found between treatments in the AUC for oxygen consumption during exercise (Fig. 2-c). 128 Blood lactate concentration

Figure 3-a shows the results for the blood lactate concentration. There was no main 129 130 effect of treatment or interaction on blood lactate concentration, but there was a 131 significant main effect of time (p < 0.05, Fig. 3-a). The blood lactate concentrations in the 132 LAC treatment were significantly lower at 20 and 30 min than the value at 0 min (both p 133 < 0.01). Similarly, the blood lactate concentrations with the PLA treatment were significantly lower at 10 min (p < 0.05) and 30 min (p < 0.01) than the value at 0 min. 134 135 There was also no significant difference between treatments on the AUC for blood lactate 136 concentration (Fig. 3-b). Given the insufficiency of previous studies on blood lactate concentrations after oral 137 138 lactate supplementation, we conducted an additional experiment to examine the time 139 course in more detail with resting subjects (n = 5) using the same lactate supplements. 140 The results of the one-way ANOVA revealed no significant changes (Fig. 3-c).

141

142 Other measurements (Table 1)

There was no main effect of treatment or an interaction on the heart rate, RPE, and blood
glucose concentration, but there was a significant main effect of time. Heart rate and RPE

145	at each point during exercise were significantly higher than the values at rest in both
146	treatments (all $p < 0.01$). The blood glucose concentrations at each point during exercise
147	were significantly lower than the values at rest with only the PLA treatment (all $p < 0.01$).
148	No significant changes were found in the gastric discomfort level.
149	
150	Discussion
151	The effect of lactate supplementation on oxygen consumption
152	We used glucose as a placebo of lactate supplement because glucose is also an oxidative
153	substrate that competes with lactate ^{4,6}). Previous studies have shown that intravenous
154	infusion of lactate increased energy expenditure, whereas glucose as a control had no
155	effect ²⁴). As a result of the oral supplementation in this study, the AUC for oxygen
156	consumption during rest was significantly higher in the LAC treatment than in the PLA
157	treatment (Fig. 2-b). To our knowledge, this is the first study to suggest that oral lactate
158	supplementation increases oxygen consumption. However, no significant effects of oral
159	lactate supplementation were observed on oxygen consumption during exercise (Fig. 2-
160	c). RPE and heart rate during exercise were also similar in both the LAC and PLA

161 treatments (Table 1), suggesting that well-matched physiological loads were exerted

162 during exercise.

163	Considering the findings of previous studies, we present some possible mechanisms for
164	the increase in resting oxygen consumption in this study. First, the administered lactate
165	may increase resting energy expenditure via the sympathetic nervous system. Ettinger et
166	al. (1991) reported that the administration of dichloroacetate, which suppresses lactate
167	production during exercise, inhibits sympathetic nervous activity ³⁷⁾ . Furthermore,
168	Haesler et al. (1995) reported that the intravenous infusion of lactate increased energy
169	expenditure, but the increase was partially negated by propranolol (β -adrenergic receptor
170	blockade) 26). Although taste stimuli can also induce sympathetic nervous system
171	activation ³⁸⁾ , action via gustatory sensation was probably not involved in the present
172	study because the ingested lactate was packaged in a gelatin capsule. Thus, the ingested
173	lactate may circulate throughout the body and partially contribute to the increase in
174	oxygen consumption via the sympathetic nervous system. However, the role of lactate
175	itself on sympathetic activation is under discussion ³⁹⁾ and requires further investigation.
176	During exercise, the body is regulated by various physiological systems including the
177	nervous and the cardiorespiratory system, to respond to physiological stress. The
178	acceleration of cardiorespiratory responses in the low-intensity exercise is affected
179	primarily by a withdrawal of parasympathetic restraint ^{40,41} . Although the exercise in this
180	study was low-intensity, the effects of exercise on heart rate and oxygen consumption

were clearly greater than that of lactate ingestion (Fig. 2-a, Table 1). It is therefore
possible that the effect of lactate ingestion was not detectable during exercise.

183 Second, there may also have been an effect of ATP consumption because of gluconeogenesis from lactate ²⁴). During rest, a portion of the exogenous lactate is 184 185 oxidized while the remainder is used as a substrate for numerous metabolic processes, 186 especially gluconeogenesis¹²⁾. It is believed that the energetic cost of gluconeogenesis 187 from lactate results in an increase in oxygen consumption²⁷⁾. Although no significant 188 difference in blood glucose concentrations were observed in this study (Table 1), this is likely due to mechanisms maintaining glucose homeostasis⁴²⁾ and the small amount of 189 190 lactate used in this study. During exercise, most of the lactate administered is rapidly oxidized in exercising skeletal muscles 1, 12, 13). Therefore, the effect of lactate 191 192 supplementation on oxygen consumption may not have been observed during exercise in 193 this study.

As described above, the increase in resting oxygen consumption by ingesting lactate supplements may be expressed through some mechanisms. Further studies are needed to reveal the details of the mechanism. Note that previous study, it has reported that intravenous infusion of lactate increased oxygen consumption during moderate-intensity exercise but not during rest²⁷⁾. The inconsistency of findings between studies may be due to differences in administration and exercise methods. There is little evidence regarding
the effect of lactate administration on oxygen consumption, so the accumulation of
knowledge is needed in the future.

The increase in oxygen consumption during rest with LAC administration was 202 203 approximately 10% compared with PLA administration (Fig. 2-a). Moreover, the oxygen 204 consumption during exercise increased approximately two-fold compared with that at rest 205 in both treatments (Fig. 2-a). The accumulation of slight effects by lactate 206 supplementation could lead to obesity prevention. However, a higher dosage of lactate 207 may be more effective at increasing energy expenditure because some studies have confirmed the dose-dependent effects of lactate administration ⁴³⁻⁴⁵. The low dosage of 208 lactate supplements in our present study and previous investigations ²⁰⁻²³) was used 209 210 following the manufacturer's guidelines. No gastric discomfort was observed in this study 211 (Table 1), likely because of the low dose. By contrast, some attempts at large quantities 212 of lactate ingestion were unsuccessful because they were found to result in gastrointestinal side effects ^{19, 36, 46}). If the dosage of lactate could be increased without 213 214 causing gastrointestinal side effects, a greater increase in energy expenditure could be 215 obtained. Future studies are needed to explore safe and effective doses of lactate 216 supplements on energy expenditure.

218 The effect of lactate supplementation on the blood lactate concentration

219 The blood lactate concentration is considered to be an indicator for determining whether 220 administered lactate has reached the whole body. In normal physiological conditions in humans, the range of the blood lactate concentration is $0.5-2 \text{ mmol/L}^{1}$. In the present 221 222 study, the ingestion of lactate supplements did not lead to detectable changes in blood 223 lactate concentrations (Fig. 3-a). Furthermore, additional experiments examining a more 224 detailed time course in resting conditions also showed no changes in blood lactate 225 concentrations (Fig. 3-c). Similarly, many studies have also reported no change in circulating lactate following lactate ingestion ^{4, 8, 9, 19-21, 36, 47-49}. Neither van Montfoort et 226 al. (2004) nor Morris et al. (2011) reported significant increases in blood lactate 227 concentrations despite the ingestion of larger quantities of lactate (320 and 120 mg/kg, 228 respectively) ^{9, 35)}. Importantly, the effects on physiological variables or athletic 229 230 performance following lactate ingestion were observed even without an increase in the blood lactate concentration^{4, 8, 9, 20, 36, 45, 48}). Therefore, it seems that the effects of lactate 231 232 ingestion could be expected even if a significant increase in blood lactate levels did not 233 occur. Exogenous lactate is a readily available substrate in that it is rapidly transported and oxidized ^{4, 18, 50}). For example, ¹³CO₂ in breath from a lactate tracer taken orally 234

immediately prior to exercise peaked 15 minutes after exercise began, whereas ¹³CO₂ 235 after taking the glucose tracer peaked at 45 min⁴). This property of lactate potentially may 236 explain why no increase in blood lactate levels is observed after lactate ingestion. 237 The blood lactate concentrations were lower during exercise than during rest in both 238 239 treatments (Fig. 3-a). Basically, blood lactate concentration represents a balance between the release of lactate into blood from working muscle and the uptake of lactate by mainly 240 the liver and muscle ^{1, 51}. Decrease in blood lactate concentrations are often observed 241 during low-intensity exercise, presumably due to enhanced lactate uptake into muscles ⁵²). 242 243 The same phenomenon may have occurred in this study.

244

245 <u>Limitations</u>

The present study has some limitations. Firstly, the effects of the timing of lactate ingestion were not examined in detail. In addition, it is necessary to examine the effects of lactate supplements during rest over a longer period. Unlike the research using continuous administration via intravenous infusion $^{6, 24-28}$, the appropriate timing of oral lactate supplementation is difficult to determine 48 . Based on manufacturer's instructions $^{21-23)}$ and the previous studies that have examined the blood bicarbonate level peaked at 80 min following the ingestion of the calcium lactate 12,35 , it is common to take lactate

253	60-80 minutes before exercise ^{21-23, 36}). In the present study, therefore, the supplements
254	were ingested 1 hour before the exercise, and the experimental data were measured from
255	10 min before exercise (i.e., 50 min after the ingestion) until the end of a 30-min exercise
256	session (Fig. 1). Depending on the timing of ingestion, oxygen consumption may also
257	increase during exercise. Moreover, a greater effect might be observed at an earlier stage
258	after lactate ingestion because lactate is metabolized rapidly 4, 18, 50). Recently, it was
259	reported that the same supplement used in our study elicited an ergogenic effect when
260	taken 30 min before the short-duration time trial ²⁰⁾ , suggesting that the necessity to
261	examine the effects at earlier stages after lactate ingestion. Future research should focus
262	on the effects of the timing of lactate ingestion. Secondly, we did not assess the lactate
263	oxidation rate throughout the experiment via isotope tracers and therefore could not assess
264	the metabolism of the ingested lactate in detail. In this study, the possibility exists that
265	lactate was absorbed in the upper intestine and then was mainly oxidized in the liver,
266	rather than circulating throughout the whole body. Moreover, the ingested lactate may
267	indirectly affect the sympathetic nervous system and/or energy expenditure through
268	specific receptors (hydroxycarboxylic acid receptor 1) in the stomach and gastrointestinal
269	tract ^{7, 53)} . New technologies such as fluorescent indicators of lactate ⁵⁴⁾ will aid in
270	developing an understanding of the role of lactate metabolism. Finally, there was a

271	limitation of the sample size for data during exercise. As mentioned above in the Materials
272	and Methods, the statistical power analysis indicated that the sample size needed to detect
273	differences in oxygen consumption during exercise was 24. If sufficient subjects had been
274	recruited, it may have been possible to detect differences in oxygen consumption during
275	exercise. Moreover, there was a gender imbalance in this study (ten men and two women).
276	Therefore, it is difficult to generalize the results of this study in terms of gender. To our
277	knowledge, there are no studies that have investigated the effect of lactate administration
278	with a focus on gender differences.

279

280 Future perspectives

281 In this study, acute oral lactate supplementation increased oxygen consumption during 282 rest. However, the long-term effects of lactate supplementation on physical variables such as body weight and body fat percentage are unknown in humans. Previous animal studies 283 284 have reported that long-term lactate administration without exercise alleviated the accumulation of fat mass ⁵⁵⁾ and that lactate-based compound treatment combined with 285 voluntary exercise (low-intensity exercise) decreased fat mass ⁵⁶). These studies suggest 286 that lactate administration could become a new therapeutic and interventional approach 287to obesity. Further human research into the effects of long-term lactate ingestion on 288

289 physical variables is warranted.

As described above, the increase in oxygen consumption owing to lactate 290 291 supplementation was smaller than that owing to the exercise in this study. Considering that ingesting large amounts of lactate can cause gastrointestinal side effects ^{19, 36, 46)}, a 292 combination of multiple energy substrates may be a feasible approach ^{19, 44)}. An example 293 294 of a promising nutritive substance is acetate, which is an easily available energy substrate with various physiological effects, as well as lactate^{24, 57-59}. For example, the intravenous 295 administration of acetate has also been reported to increase energy expenditure²⁴⁾. Further 296 297 research is needed for application in clinical practice.

298

299 <u>Conclusion</u>

In this study, we investigated the effects of acute oral lactate supplementation on energy metabolism using a lactate supplement and glucose as the placebo. As a result, acute oral lactate supplementation significantly increased oxygen consumption during rest compared with that with placebo.

304

305 Acknowledgements

306	This work was supported by JSPS KAKENHI (grant number: 22K11597). We thank
307	Jenna MacArthur, PhD, from Edanz (https://jp.edanz.com/ac) for editing a draft of this
308	manuscript.
309	
310	Conflict of Interest
311	The authors declare no conflicts of interest.
312	
313	Author Contributions
314	Conceived and designed the study: KS.
315	Performed the study: KS.
316	Analyzed the data: KS.
317	Interpreted the data: KS, YT, and HH.
318	Wrote the paper: KS.
319	All authors approved the final version of the manuscript.

320 References

- 1) Brooks GA. 2018. The science and translation of lactate shuttle theory. Cell Metab
- 322 27: 757-785. doi: 10.1016/j.cmet.2018.03.008.
- 323 2) Gladden LB. 2004. Lactate metabolism: a new paradigm for the third millennium. J
 324 *Physiol* 558: 5-30. doi: 10.1113/jphysiol.2003.058701.
- 325 3) Rabinowitz JD and Enerback S. 2020. Lactate: the ugly duckling of energy
- 326 metabolism. *Nat Metab* 2: 566-571. doi: 10.1038/s42255-020-0243-4.
- 327 4) Azevedo JL, Tietz E, Two-Feathers T, Paull J and Chapman K. 2007. Lactate,
- fructose and glucose oxidation profiles in sports drinks and the effect on exercise performance. *PLoS One* 2: e927. doi: 10.1371/journal.pone.0000927.
- 330 5) Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X, Lu WY, Esparza LA, Reya
- 331 T, Zhan L, Guo JYX, White E and Rabinowitz JD. 2017. Glucose feeds the TCA
- 332 cycle via circulating lactate. *Nature* 551: 115-118. doi: 10.1038/nature24057.
- 333 6) Miller BF, Fattor JA, Jacobs KA, Horning MA, Navazio F, Lindinger MI and Brooks
- GA. 2002. Lactate and glucose interactions during rest and exercise in men: effect of
- 335 exogenous lactate infusion. J Physiol 544: 963-975. doi:
 336 10.1113/jphysiol.2002.027128.
- 337 7) Brooks GA, Osmond AD, Arevalo JA, Duong JJ, Curl CC, Moreno-Santillan DD and

338		Leija RG. 2023. Lactate as a myokine and exerkine: drivers and signals of physiology
339		and metabolism. J Appl Physiol 134: 529-548. doi: 10.1152/japplphysiol.00497.2022.
340	8)	Fahey TD, Larsen JD, Brooks GA, Colvin W, Henderson S and Lary D. 1991. The
341		effects of ingesting polylactate or glucose polymer drinks during prolonged exercise.
342		Int J Sport Nutr 1: 249-256. doi: 10.1123/ijsn.1.3.249.
343	9)	van Montfoort MCE, van Dieren L, Hopkins WG and Shearman JP. 2004. Effects of
344		ingestion of bicarbonate, citrate, lactate, and chloride on sprint running. Med Sci
345		Sports Exerc 36: 1239-1243. doi: 10.1249/01.MSS.0000132378.73975.25.
346	10)	Chang AJ, Ortega FE, Riegler J, Adison DVM and Krasnow MA. 2015. Oxygen
347		regulation of breathing through an olfactory receptor activated by lactate. Nature
348		527: 240-244. doi: 10.1038/nature15721.
349	11)	Horsdal OK, Moeslund N, Berg-Hansen K, Nielsen R, Moller N, Eiskjaer H, Wiggers
350		H and Gopalasingam N. 2024. Lactate infusion elevates cardiac output through
351		increased heart rate and decreased vascular resistance: a randomised, blinded,
352		crossover trial in a healthy porcine model. J Transl Med 22: 285. doi:
353		10.1186/s12967-024-05064-3.
354	12)	Morris DM. 2012. Effects of oral lactate consumption on metabolism and exercise

355 performance. Curr Sports Med Rep 11: 185-188. doi:

356 10.1249/JSR.0b013e31825da992.

357	13)	van Hall G, Jensen-Urstad M, Rosdahl H, Holmberg HC, Saltin B and Calbet JAL.
358		2003. Leg and arm lactate and substrate kinetics during exercise. Am J Physiol
359		Endocrinol Metab 284: E193-E205. doi: 10.1152/ajpendo.00273.2002.
360	14)	Brooks GA. 1986. Lactate production under fully aerobic conditions: the lactate
361		shuttle during rest and exercise. Fed Proc 45: 2924-9. doi: nothing.
362	15)	Hoshino D, Hanawa T, Takahashi Y, Masuda H, Kato M and Hatta H. 2014. Chronic
363		post-exercise lactate administration with endurance training increases glycogen
364		concentration and monocarboxylate transporter 1 protein in mouse white muscle. J
365		Nutr Sci Vitaminol 60: 413-419. doi: 10.3177/jnsv.60.413.
365 366	16)	Nutr Sci Vitaminol 60: 413–419. doi: 10.3177/jnsv.60.413. Takahashi K, Kitaoka Y, Yamamoto K, Matsunaga Y and Hatta H. 2020. Effect of
	16)	
366	16)	Takahashi K, Kitaoka Y, Yamamoto K, Matsunaga Y and Hatta H. 2020. Effect of
366 367	16)	Takahashi K, Kitaoka Y, Yamamoto K, Matsunaga Y and Hatta H. 2020. Effect of post-exercise lactate administration on glycogen repletion and signaling activation in
366 367 368		Takahashi K, Kitaoka Y, Yamamoto K, Matsunaga Y and Hatta H. 2020. Effect of post-exercise lactate administration on glycogen repletion and signaling activation in different types of mouse skeletal muscle. <i>Curr Res in Physiol</i> 3: 34-43. doi:
366 367 368 369		Takahashi K, Kitaoka Y, Yamamoto K, Matsunaga Y and Hatta H. 2020. Effect of post-exercise lactate administration on glycogen repletion and signaling activation in different types of mouse skeletal muscle. <i>Curr Res in Physiol</i> 3: 34-43. doi: 10.1016/j.crphys.2020.07.002.

373 18) Peronnet F, Burelle Y, Massicotte D, Lavoie C and HillaireMarcel C. 1997.

374		Respective oxidation of C-13-labeled lactate and glucose ingested simultaneously
375		during exercise. J Appl Physiol 82: 440-446. doi: 10.1152/jappl.1997.82.2.440.
376	19)	Swensen T, Crater G, Bassett Jr DR and Howley ET. 1994. Adding polylactate to a
377		glucose polymer solution does not improve endurance. Int J Sports Med 15: 430-434.
378		doi: 10.1055/s-2007-1021083.
379	20)	Ewell TR, Bomar MC, Brown DM, Brown RL, Kwarteng BS, Thomson DP and Bell
380		C. 2024. The influence of acute oral lactate supplementation on responses to cycle
381		ergometer exercise: a randomized, crossover pilot clinical trial. Nutrients 16: 2624.
382		doi: 10.3390/nu16162624.
383	21)	Northgraves MJ, Peart DJ, Jordan CA and Vince RV. 2014. Effect of lactate
384		supplementation and sodium bicarbonate on 40-km cycling time trial performance.
385		J Strength Cond Res 28: 273-280. doi: 10.1519/JSC.0b013e3182986a4c.
386	22)	Russ AE, Schifino AG and Leong CH. 2019, Effect of lactate supplementation on
387		VO2peak and onset of blood lactate accumulation: A double-blind, placebo-
388		controlled trial. Acta Gymnica 49: 51-57. doi: 10.5507/ag.2019.004.
389	23)	Peveler WW and Palmer TG. 2012. Effect of magnesium lactate dihydrate and
390		calcium lactate monohydrate on 20-km cycling time trial performance. J Strength
391		Cond Res 26: 1149-1153. doi: 10.1519/JSC.0b013e31822dcd7f.

392 24) Chiolero R, Mavrocordatos P, Burnier P, Cayeux MC, Schindler C, Jequier E and

- 393 Tappy L. 1993. Effects of infused sodium acetate, sodium lactate, and sodium β -
- 394 hydroxybutyrate on energy expenditure and substrate oxidation rates in lean humans.
- 395 *Am J Clin Nutr* 58: 608-613. doi: 10.1093/ajcn/58.5.608.
- 396 25) Ferrannini E, Natali A, Brandi LS, Bonadonna R, De Kreutzemberg SV, DelPrato S
- and Santoro D. 1993. Metabolic and thermogenic effects of lactate infusion in
 humans. *Am J Physiol* 265: E504-E512. doi: 10.1152/ajpendo.1993.265.3.E504.
- 399 26) Haesler E, Schneiter P, Temler E, Jequier E and Tappy L. 1995. Effects of lactate
- 400 infusion on hepatic gluconeogenesis and glycogenolysis. *Clin Physiol* 15: 581-595.
- 401 doi: 10.1111/j.1475-097X.1995.tb00546.x.
- 402 27) Miller BF, Lindinger MI, Fattor JA, Jacobs KA, LeBlanc PJ, Duong M,
- 403 Heigenhauser GJF and Brooks GA. 2005. Hematological and acid-base changes in
- 404 men during prolonged exercise with and without sodium-lactate infusion. J Appl
- 405 *Physiol* 99: 1239. doi: 10.1152/japplphysiol.00583.2005.
- 406 28) Pedersen MGB, Rittig N, Bangshaab M, Berg-Hansen K, Gopalasingam N, Gormsen
- 407 LC, Sondergaard E and Moller N. 2024. Effects of exogenous lactate on lipid, protein,
- 408 and glucose metabolism-a randomized crossover trial in healthy males. Am J Physiol
- 409 *Endocrinol Metab* 326: E443-E453. doi: 10.1152/ajpendo.00301.2023.

410	29)	Hawley JA, Hargreaves M, Joyner MJ and Zierath JR. 2014. Integrative biology of
411		exercise. Cell 159: 738-749. doi: 10.1016/j.cell.2014.10.029.
412	30)	Petridou A, Siopi A and Mougios V. 2019. Exercise in the management of obesity.
413		Metabolism 92: 163-169. doi: 10.1016/j.metabol.2018.10.009.
414	31)	Trost SG, Owen N, Bauman AE, Sallis JF and Brown W. 2002. Correlates of adults'
415		participation in physical activity: Review and update. Med Sci Sports Exerc 34: 1996-
416		2001. doi: 10.1097/00005768-200212000-00020.
417	32)	Starr KNP, McDonald SR and Bales CW. 2014. Obesity and physical frailty in older
418		adults: a scoping review of lifestyle intervention trials. J Am Med Dir Assoc 15: 240-
419		250. doi: 10.1016/j.jamda.2013.11.008.
420	33)	Bergstrom HC, Housh TJ, Traylor DA, Lewis RW, Jenkins NDM, Cochrane KC,
421		Schmidt RJ, Johnson GO and Housh DJ. 2013. Physiologic responses to a

. . .

c

- 422 thermogenic nutritional supplement at rest, during low-intensity exercise, and during
- 423 recovery from exercise in college-aged women. Appl Physiol Nutr Metab 38: 988-
- 424 995. doi: 10.1139/apnm-2013-0029.

110

2(1) **T**

- 425 34) Faude O, Kindermann W and Meyer T. 2009. Lactate threshold concepts. How valid
- 426 are they?. *Sports Med* 39: 469-490. doi: 10.2165/00007256-200939060-00003.
- 427 35) Morris DM, Shafer RS, Fairbrother KR and Woodall MW. 2011. Effects of lactate

428		consumption on blood bicarbonate levels and performance during high-intensity
429		exercise. Int J Sport Nutr Exerc Metab 21: 311-317. doi: 10.1123/ijsnem.21.4.311.
430	36)	Bordoli C, Varley I, Sharpe GR, Johnson MA and Hennis PJ. 2024. Effects of oral
431		lactate supplementation on acid-base balance and prolonged high-intensity interval
432		cycling performance. J Funct Morphol Kinesiol 9: 139. doi: 10.3390/jfmk9030139.
433	37)	Ettinger S, Gray K, Whisler S and Sinoway L. 1991. Dichloroacetate reduces
434		sympathetic nerve responses to static exercise. Am J Physiol 261: H1653-H1658.
435		doi: 10.1152/ajpheart.1991.261.5.H1653.
436	38)	Henry DB, Pemberton AL, Rogers RR and Ballmann CG. 2023. A matter of taste:
437		roles of taste preference on performance and psychological responses during
438		anaerobic exercise. Int J Environ Res Public Health 20: 3730. doi:
439		10.3390/ijerph20043730.
440	39)	Lund J, Breum AW, Gil C, Falk S, Sass F, Isidor MS, Dmytriyeva O, Ranea-Robles
441		P, Mathiesen CV, Basse AL, Johansen OS, Fadahunsi N, Lund C, Nicolaisen TS,
442		Klein AB, Ma T, Emanuelli B, Kleinert M, Sorensen CM and Gerhart-Hines Z, et al.
443		2023. The anorectic and thermogenic effects of pharmacological lactate in male mice
444		are confounded by treatment osmolarity and co-administered counterions. Nat Metab

445 5: 677-698. doi: 10.1038/s42255-023-00780-4.

- 446 40) Forster HV, Haouzi P and Dempsey JA. 2012. Control of breathing during exercise.
- 447 *Compr Physiol* 2: 743-777. doi: 10.1002/cphy.c100045.
- 448 41) Robinson BF, Epstein SE, Beiser GD and Braunwald E. 1966. Control of heart rate
- 449 by the autonomic nervous system. Studies in man on the interrelation between 450 baroreceptor mechanisms and exercise. *Circ Res* 19: 400-411. doi:
- 451 10.1161/01.res.19.2.400.
- 452 42) Zhang XP, Yang SS, Chen JL and Su ZG. 2019. Unraveling the Regulation of Hepatic

453 Gluconeogenesis. *Front Endocrinol* 9: 802. doi: 10.3389/fendo.2018.00802.

- 454 43) Luo FT, Shao T, Liu XD, Yang QY, Gai Y, Ma GL and Chen YT. 2024. Dose and age
- 455 dependent effects of lactate supplementation in shaping gut microbiota. J Funct
- 456 *Foods* 122: 106467. doi: 10.1016/j.jff.2024.106467.
- 457 44) Ottosen RN, Seefeldt JM, Hansen J, Nielsen R, Moller N, Johannsen M and Poulsen
- 458 TB. 2024. Preparation and preclinical characterization of a simple ester for dual
- 459 exogenous supply of lactate and beta-hydroxybutyrate. J Agric Food Chem 72:
- 460 19883-19890. doi: 10.1021/acs.jafc.4c04849.
- 461 45) Zhang G, Shirai N and Suzuki H. 2009. L-lactic acid's improvement of swimming
- 462 endurance in mice. Int J Sport Nutr Exerc Metab 19: 673-684. doi:
- 463 10.1123/ijsnem.19.6.673.

464	46) Painelli VD, da Silva RP, de Oliveira OM, de Oliveira LF, Benatti FB, Rabelo T,
465	Guilherme JPLF, Lancha AH and Artioli GG. 2014. The effects of two different doses
466	of calcium lactate on blood pH, bicarbonate, and repeated high-intensity exercise
467	performance. Int J Sport Nutr Exerc Metab 24: 286-295. doi: 10.1123/ijsnem.2013-
468	0191.
469	47) Brouns F, Fogelholm M, van Hall G, Wagenmakers A and Saris WH. 1995. Chronic
470	oral lactate supplementation does not affect lactate disappearance from blood after
471	exercise. Int J Sport Nutr 5: 117-124. doi: 10.1123/ijsn.5.2.117.
472	48) Cho HS, Lee WS, Yoon KJ, Park SH, Shin HE, Kim YS, Chang H and Moon HY.
473	2020. Lactate consumption mediates repeated high-intensity interval exercise-
474	enhanced executive function in adult males. Phys Act Nutr 24: 15-23.
475	doi:10.20463/pan.2020.0023.
476	49) Oliveira LF, Painelli VD, Nemezio K, Gonçalves LS, Yamaguchi G, Saunders B,
477	Gualano B and Artioli GG. 2017 Chronic lactate supplementation does not improve
478	blood buffering capacity and repeated high-intensity exercise. Scand J Med Sci
479	Sports 27: 1231-1239. doi: 10.1111/sms.12792.
480	50) Kim T, Hwang D, Kyun S, Jang I, Kim SW, Park HY, Hwang H, Lim K and Kim J.
481	2024. Exogenous lactate treatment immediately after exercise promotes glycogen

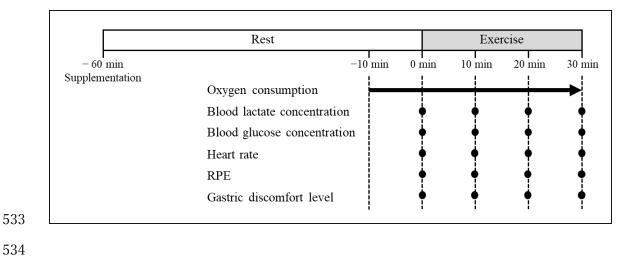
482	re	ecovery in type-II muscle in mice. Nutrients 16: 2831. doi: 10.3390/nu16172831.
483	51) N	Mazzeo RS, Brooks GA, Schoeller DA and Budinger TF. 1986. Disposal of blood
484	[]	1- ¹³ C] lactate in humans during rest and exercise. <i>J Appl Physiol</i> 60: 232-241. doi:
485	1	0.1152/jappl.1986.60.1.232.
486	52) Y	Yang WH, Park H, Grau M and Heine O. 2020. Decreased blood glucose and lactate:
487	Is	s a useful indicator of recovery ability in athletes?. Int. J Environ Res Public Health
488	1′	7: 5470. doi: 10.3390/ijerph17155470.
489	53) P	edersen MGB, Sondergaard E, Nielsen CB, Johannsen M, Gormsen LC, Moller N,
490	Je	essen N and Rittig N. 2022. Oral lactate slows gastric emptying and suppresses
491	aj	ppetite in young males. Clin Nutr 41: 517-525. doi: 10.1016/j.clnu.2021.12.032.
492	54) L	i X, Zhang YA, Xu LY, Wang AX, Zou YJ, Li T, Huang L, Chen WC, Liu SN, Jiang
493	K	, Zhang XZ, Wang DM, Zhang LJ, Zhang Z, Zhang ZY, Chen XJ, Jia W, Zhao AH,
494	Y	an XF and Zhou HM, et al. 2023. Ultrasensitive sensors reveal the spatiotemporal
495	la	andscape of lactate metabolism in physiology and disease. Cell Metab 35: 200-211.
496	d	oi: 10.1016/j.cmet.2022.10.002.
497	55) C	Cai H, Wang X, Zhang ZX, Chen J, Wang FB, Wang L and Liu J. 2022. Moderate L-
498	la	actate administration suppresses adipose tissue macrophage M1 polarization to
499	al	lleviate obesity-associated insulin resistance. J Biol Chem 298: 101768. doi:

500 10.1016/j.jbc.2022.101768.

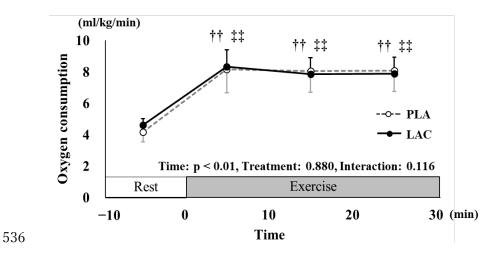
- 501 56) Hashimoto T, Yokokawa T, Narusawa R, Okada Y, Kawaguchi R and Higashida K.
- 502 2019. A lactate-based compound containing caffeine in addition to voluntary running
- exercise decreases subcutaneous fat mass and improves glucose metabolism in obese
 rats. *J Funct Foods* 56: 84-91. doi: 10.1016/j.jff.2019.03.007.
- 505 57) Li GL, Xie C, Lu SY, Nichols RG, Tian Y, Li LC, Patel D, Ma YY, Brocker CN, Yan
- 506 TT, Krausz KW, Xiang R, Gavrilova O, Patterson AD and Gonzalez FJ. 2017.
- 507 Intermittent fasting promotes white adipose browning and decreases obesity by 508 shaping the gut microbiota. *Cell Metab* 26: 672-685. doi:
- 509 10.1016/j.cmet.2017.08.019.
- 510 58) Seike K, Banjo M, Nakano S, Takahashi Y, Takahashi K, Abe S and Hatta H. 2020.
- 511 Effects of acetate administration on endurance training-induced metabolic
- adaptations in mice fed high fat diet. J Sports Med Phys Fitness 9: 191-198. doi:
- 513 https://doi.org/10.7600/jpfsm.9.191.
- 514 59) Sales KM and Reimer RA. 2023. Unlocking a novel determinant of athletic
- 515 performance: The role of the gut microbiota, short-chain fatty acids, and "biotics" in
- 516 exercise. J Sport Health Sci 12: 36-44. doi: 10.1016/j.jshs.2022.09.002.

517

518 **Fig. 1.** Schematic representation of the experiment.


519

- 520 Fig. 2. Changes in oxygen consumption during rest and exercise (a). AUC for oxygen
- 521 consumption during rest (b). AUC for oxygen consumption during exercise (c).
- 522 ^{††}: p < 0.01 vs. the value during rest with PLA treatment.
- 523 \ddagger p < 0.01 vs. the value during rest with LAC treatment.
- 524 **: p < 0.01 vs. PLA treatment.


525

- 526 Fig. 3. Changes in blood lactate concentration during rest and exercise (a). AUC for blood
- 527 lactate concentration during exercise (b). The additional experimental results detailing the
- 528 changes in the blood lactate concentration after ingesting a lactate supplement (c).
- 529 [†]: p < 0.05 vs. the value at 0 min with PLA treatment.
- 530 ^{††}: p < 0.01 vs. the value at 0 min with PLA treatment.
- 531 $\ddagger: p < 0.05$ vs. the value at 0 min with LAC treatment.

532 Fig. 1

535 Fig. 2-a

537

538 Fig. 2-b

Fig. 2-c

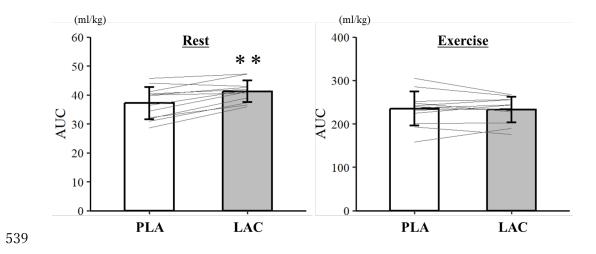
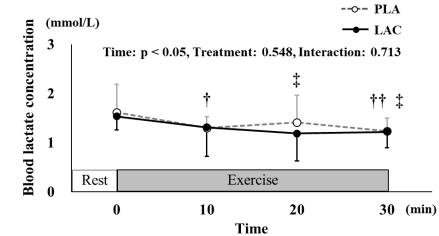




Figure 2 (Seike et al.)

540 Fig. 3-a

544 **Fig. 3-c**

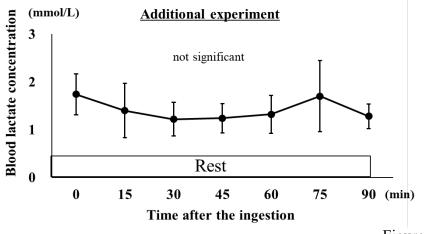


Figure 3 (Seike et al.)

546 **Table 1.** Other measurements. The data shown were measured during rest before exercise

		Rest	Exercise					
		0 min	10 min	20 min	30 min	Treatment	Time	Interaction
Heart rate (beats/min)	PLA	65 ± 8	77 ± 7 **	75 ± 8.6 **	78 ± 9 **	NS	p < 0.01	NS
ficant fate (deats/fillin)	LAC	65 ± 8	75 ± 10 **	76 ± 10 **	76 ± 10 **			
RPE	PLA	6 ± 0	8.4 ± 1.8 **	8.9 ± 2.0 **	9. 8± 2.2 **	NS	p < 0.01	NS
KFE	LAC	6 ± 0	8.4 ± 1.8 **	9.1 ± 2.0 **	9.8 ± 2.1 **			
Blood glucose concentration	PLA	111 ± 16	98 ± 13 **	101 ± 14 **	100 ± 13 **	NS	p < 0.05	NS
(mg/dL)	LAC	108 ± 16	104 ± 18	103 ± 17	107 ± 16			
Gastric discomfort level	PLA	1 ± 4	1 ± 4	2 ± 5	2 ± 5	NS	NS	NS
(mm)	LAC	2 ± 8	2 ± 6	2 ± 6	2 ± 7			

547 (at 0 min) and during exercise (at 10, 20, and 30 min).

548

549 NS: not significant.

550 ******: p < 0.01 vs. at 0 min.