Accepted Manuscript

1	Type of manuscript: Short communication
2	Title: Reliability of ultrasonographic measurement of muscle and tendon morphology
3	using the Overlapping Images Method
4	Names of authors: Akane Yoshimura* ^{1,2} , Masaaki Honda ³ , Shinshiro Mineta ^{1,4} ,
5	Kenichiro Murata ^{1,5} , Norikazu Hirose ³
6	Affiliations and Mailing addresses:
7	1 Graduate School of Sport Sciences, Waseda University, 3-4-1 Higashifushimi
8	Nishitokyo-shi Tokyo 202-0021 Japan (Affiliation where the experiment was
9	conducted)
10	2 Faculty of Education and Integrated Arts and Sciences, Waseda University, 1-6-1
11	Nishiwaseda Shinjuku-ku Tokyo 169-8050 Japan (Current affiliation)
12	3 Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima Tokorozawa-shi
13	Saitama 359-1192 Japan
14	4 Department of Health and Sports Science, Fukuyama Heisei University, 117-1 Masato
15	Kamiiwanari Miyuki-cho Fukuyama-shi Hiroshima 720-0001 Japan (Current affiliation)
16	5 Yokohama Tama-Plaza Sports Clinic, 2-14-9 Utsukushigaoka Aoba-ku Yokohama-shi
17	Kanagawa 225-0002 Japan (Current affiliation)

18	Number of figures: 3
19	Number of tables: 3
20	Brief running title (70 characters or less): Overlapping Images Method for triceps
21	surae
22	Corresponding author's e-mail address*:
23	Name: Akane Yoshimura
24	E-mail address: ayoshimura@aoni.waseda.jp
25	Affiliation and mailing address: Graduate School of Sport Sciences, Waseda
26	University; Faculty of Education and Integrated Arts and Sciences Waseda
27	University
28	
29	
30	
31	
32	
33	

34 Abstract

35 Problem addressed: Previous attempts have been made to superimpose ultrasound 36 images (Overlapping Images Method). The merit of this method is that it enables 37 capturing the entire morphology of the muscle and tendon in the longitudinal direction 38 beyond the width of the ultrasound probe. However, the division points between tissues 39 were identified visually, and the reliability of the measurement was not clarified. 40 **Experimental approach:** This study identified the division points for the overlapping 41 images method using the following two procedures: (1) visual-only identification and 42 (2) a combination of visual and custom-built software-based identification. Finally, the 43 reliability of the measurements for each procedure was examined by estimating the intra- and inter-rater correlation coefficients (ICC 1.1, ICC 2.1). The length of the 44 45 Achilles tendon, muscle-tendon unit, and gastrocnemius muscle was measured using the overlapping images method for 19 volunteers. Main results and findings: The ICC 1.1 46 47 and ICC 2.1 scores for visual identification alone ranged between 0.61–0.91 and 0.70– 48 0.93, respectively. The scores for the combination of visual and software-based identification ranged 0.90–0.99 and 0.58–0.96, respectively. **Conclusions:** The high 49 50 intra- and inter-rater reliability in the overlapping images method was demonstrated in 51 almost all measurements of the three tissue lengths and the applicability of overlapping

52	images method was demonstrated. In particular, the intra-rater reliability was better
53	when a combination of visual and custom-built software-based identification was used.
54	Keywords: Achilles tendon, gastrocnemius muscle, ultrasound image, reliability
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	

67 Information in Japanese

- 68 **タイトル**:「オーバーラッピング画像法」による超音波を用いた筋及び腱の形
- 69 態評価の信頼性
- 70 **著者名:**吉村茜*^{1,2}, 誉田雅彰³, 峯田 晋史郎^{1,4}, 村田 健一朗^{1,5}, 広瀬統一³

71 所属:

- 72 1 早稲田大学スポーツ科学研究科(研究実施時の所属)
- 73 2 早稲田大学教育・総合科学学術院(現在の所属)
- 74 3 早稲田大学スポーツ科学学術院
- 75 4 福山平成大学健康スポーツ科学科(現在の所属)
- 76 5 横浜たまプラーザ 運動器スポーツクリニック(現在の所属)

77 **アブストラクト:**

- 78 **Problem addressed:** 先行研究において、「オーバーラッピング画像法」と呼ば
- 79 れる個別の超音波画像を重ね合わせる手法によって、筋や腱の形態を測定する
- 80 試みがされている (Urlando, A., & Hawkins, D. (2007). Med Sci Sports Exerc.,
- 81 39(7): 1147-1152)。この手法のメリットは、プローブ幅に依存せず、長軸方向で
- 82 組織の全長を計測できる点である。しかしながら、先行研究では重ね合わせた

83	超音波画像に描出される組織の分岐点について目視で識別されており、この手
84	法の信頼性について明確に示されていない。Experimental approach: そこで本
85	研究では、(1)目視により識別、(2)目視とカスタマイズしたソフトウェアの
86	両方による識別、以上2つの手順により超音波画像上の組織の分岐点を定義
87	し、それぞれの手順によるオーバーラッピング画像法の検者内及び検者間信頼
88	性(ICC1.1, ICC2.1)を検討することとした。対象は健常成人 19 名とし、アキ
89	レス腱、筋腱部複合部、腓腹筋の全長をオーバーラッピング画像法を使用して
90	計測した。Main results and findings: 目視による識別に基づく測定において
91	ICC1.1 と ICC2.1 のスコアは、それぞれ 0.61-0.91 と 0.70-0.93 の範囲内であっ
92	た。一方、目視とソフトウェアの両方による識別に基づく測定において ICC1.1
93	と ICC2.1 のスコアは、それぞれ 0.90-0.99 と 0.58-0.96 の範囲内であった。
94	Conclusions: オーバーラッピング画像法における検者内及び検者間信頼性はお
95	およそ高いものと評価され、応用可能性が示された。特に、目視とソフトウェ
96	アの両方による識別に基づく測定では、目視のみの識別の場合と比べて検者内
97	信頼性が高かった。

101 Introduction

102	Most previous studies have used ultrasound to evaluate muscle
103	morphology, as it is non-invasive and measurements are performed in real time. It is
104	well-known that ultrasound has been widely used to capture morphological
105	characteristics in sports sciences. For example, we previously measured muscle
106	morphology and extensibility using b-mode ultrasound to investigate the effect of
107	massage interventions before and after the intervention $^{1,2)}$. In addition, based on the
108	morphological characteristics reflected on ultrasound images, attempts have been made
109	to detect age-related changes in muscle mass in growing children and to explain the
110	effects of long-term strength training on muscle mass ^{3,4)} . However, a limitation of
111	morphological measurements by b-mode ultrasound is that the measurable area depends
112	on the width of the ultrasound probe. Therefore, morphological characteristics generally
113	cannot be measured over an area wider than the width of the ultrasound probe. Although
114	the panoramic view function has been used in recent years to overcome this limitation
115	and seems to be reliable and valid ⁵), devices equipped with this function are limited.
116	Some scientists have attempted to superimpose ultrasound images obtained
117	separately by moving the probe longitudinally over the skin of the Achilles tendon and
118	gastrocnemius muscle. This method is called the "Overlapping Images Method (OIM)"

119	^{6,7,8)} . However, a serious problem is the reliability of this method for visually identifying
120	the division points reflected in ultrasound images, such as the proximal and/or distal
121	tendon and muscle ends, has not been fully clarified.
122	Against this backdrop, the present study identified the division point of OIM
123	using the following two procedures: (1) conventional visual-only identification and (2) a
124	combination of visual and custom-built software-program-based identification, which
125	was conducted out of concern regarding the low reliability of visual-only identification.
126	We then examined the intra- and inter-rater reliabilities of the OIM measurements for
127	each procedure.
128	Based on the only report showing that the high intra-rater reliability was
129	achieved for the OIM measurement of Achilles tendon length ⁷), we hypothesized that
130	the OIM measurement would be a reliable method for both procedures. We also
131	predicted that the reliability would improve by using a combination of visual and
132	software identification.
133	Materials and Methods
134	Study population
105	

135 This study was approved by the Research Ethical Review Committee with

136	Human Subjects of Waseda University, and all procedures were performed in
137	accordance with the Declaration of Helsinki (approval number: 2016-101). Data
138	obtained from nineteen volunteers (12 men and 7 women) was analyzed. All
139	participants were fully informed of the procedure and purpose of the study, and
140	provided written informed consent.
141	Procedure
142	Participants were instructed to lie on their backs on a Biodex chair (Biodex
143	System 3; SAKAI Medical Co., Ltd., Tokyo, Japan), with the seat placed approximately
144	parallel to the floor. The right ankle joint was fixed to a plate attached to Biodex, and
145	the knees and hips were maintained in neutral positions. When the fixed ankle was
146	moved passively with the plate to prevent excessive varus and valgus joint motions, the
147	maximum dorsiflexion and plantar flexion ranges of motion of the ankle displayed on
148	the Biodex screen were recorded. Simultaneously, an electromagnetic 2-dimensional
149	goniometer (DTS EM-852; SAKAI Medical Co., Ltd., Tokyo, Japan) was attached to

- 150 the skin along the right femur and fibula lines to monitor the knee joint range of motion
- 151 during the ankle's passive movement so that the compensation movement could be

152 regulated to within \pm 5°.

153 <u>Ultrasound measurement</u>

154	Ultrasound images of the Achilles tendon, muscle-tendon unit, and
155	gastrocnemius muscle were obtained based on the processes of the OIM $^{6,7,8)}$ with the
156	ankle joint in three different positions: neutral, maximum dorsiflexion, and maximum
157	plantar flexion. These processes include the following steps:
158	[Step-1] Pieces of cut thread were arranged and stuck with a tape on the skin on
159	the back of the lower leg in a straight line from the center of the calcaneal tuber to the
160	most proximal end of the gastrocnemius muscle, serving as landmarks at intervals
161	smaller than the width of the ultrasound probe (i.e., approximately 3 cm) (SNiBLE;
162	Konica Minolta, Inc., Tokyo, Japan). (Figure 1).
163	[Step-2] The ultrasound probe was placed on the skin over the calcaneal tuber,
164	and the first ultrasound image was acquired by visualizing the Achilles tendon insertion
165	site and landmarks at both ends of the image.
166	[Step-3] The probe was applied over the skin from the calcaneal tuber to the
167	most proximal end of the gastrocnemius muscle and the ultrasound images were
168	acquired by visualizing landmarks at both ends of each image.
169	[Step-4] Each image acquired in Step-3 was overlapped based on marker lines,
170	and an image showing the overall Achilles tendon, muscle-tendon unit, and
171	gastrocnemius muscle was created by superimposing each image (Figure 2) in the

173	[Step-5] Four division points (i.e., the most distal end of the Achilles tendon,
174	the muscle-tendon junction of the soleus muscle, the muscle-tendon junction of the
175	gastrocnemius muscle, and the most proximal end of the gastrocnemius muscle) in the
176	image made in Step-4 were identified in two ways; the first was by the raters' visual
177	identification, and the second was using custom-built MATLAB-based program
178	(MathWorks) in addition to visual identification. In the software identification approach,
179	the division points were decided by scanning within regions of interest (ROI) set into
180	MATLAB after importing the ultrasound image into the software program. First, the
181	ROI-reference (red square in Figure 3) was placed at the most proximal position at each
182	division point, and an ROI-scan range (orange square in Figure 3) was placed at the
183	whole division point covering the ROI-reference (step-5-1 in Figure 3). Next, the area
184	within the ROI-scan (green square in Figure 3) was scanned while moving from the
185	distal to the proximal side (step-5-1 in Figure 3). Finally, texture features in ROI-
186	reference and scan were calculated by gray-scale histogram analysis and squared euclid
187	distance (SED), which is an indicator for traditional similarity evaluation ⁹⁾ , between
188	ROI-reference and each ROI-scan (step-5-2 in Figure 3). The position where SED
189	values were maximum (i.e., the lowest degree of similarity) was defined as the division

191	[Step-6] The lengths of the Achilles tendon, muscle-tendon unit, and
192	gastrocnemius muscle were measured using ImageJ (National Institution of Health)
193	based on the definition in Step-5.
194	All steps were performed by rater A, whereas only step 5 was performed by all
195	three examiners (raters A, B, and C) to examine the inter-rater reliability.
196	Statistical analysis
197	In order to examine the intra- and inter-rater reliabilities of OIM measurement
198	by visual-only identification and a combination of visual and software identification, the
199	ICC 1.1 and ICC 2.1 scores were estimated. ICC 1.1 was calculated using the data
200	measured by rater A, whereas ICC 2.1 was conducted using the data measured by raters
201	A, B, and C. In addition, based on the definition that the value obtained by visual-only
202	identification is the "true value," the value differences between visual-only and
203	combination identification were examined using the paired <i>t</i> -test or Wilcoxon signed-
204	rank test following the Shapiro-Wilk normality test to investigate the validity of the
205	combination identification. The level of significance was set as $p < .05$. IBM SPSS
206	Statistics for Windows, Version 25.0. (IBM Corp., Armonk, NY, IBM Corp.) was used
207	for all the statistical analyses.

Results

209	The age, height, and weight of the 19 participants were 23.36±2.54 years,
210	164.36 ± 8.05 cm, 60.76 ± 10.57 kg (mean \pm standard), respectively.
211	Tables 1 and 2 show the evaluated ICC scores, and Table 3 shows each tissue
212	length and the differences in absolute values between visual-only and combination
213	identification. The ICC 1.1 and ICC 2.1 scores by the visual-only identification were
214	0.61–0.91 and 0.70–0.93, respectively. These scores by the combination identification
215	ranged 0.90–0.99 and 0.58–0.96, respectively. There were significant differences
216	between visual-only and combination identification in the values of the Achilles tendon
217	at the neutral and maximum plantar flexion positions.
218	Discussion
219	We investigated the intra- and inter-rater reliabilities of visual-only and
220	combination identification in OIM by comparing the lengths of the Achilles tendon,
221	muscle-tendon unit, and gastrocnemius muscle measured based on ultrasound image
222	divisions. Based on previously reported criteria: poor, < 0.40; fair, 0.40–0.59; good,
223	0.60–0.74; and excellent \geq 0.75 ^{10,11} , the intra- and inter-rater reliability was "good" or
224	"excellent" for both visual-only and combination identification in the present study. In
225	particular, the OIM determined by combination identification showed a high intra-rater

226	reliability of the length measurements of the Achilles tendon, muscle-tendon unit, and
227	gastrocnemius muscle, which supported our hypothesis. To investigate the validity of
228	the combination identification, we also examined the differences between visual-only
229	and combination identification based on the definition that the value determined by the
230	visual-only identification is the "true value." There were no significant differences
231	between visual-only and combination identification, except in the length of the Achilles
232	tendon at the neutral and maximum-plantar flexion positions. The findings of the
233	present study suggest that OIM is applicable in the field of sports science as a method
234	for investigating the influence of massage intervention, training, or growth in children
235	on the overall length of muscles and tendons.
235 236	on the overall length of muscles and tendons. Notably, the ICC score on the gastrocnemius muscle measurement at neutral
236	Notably, the ICC score on the gastrocnemius muscle measurement at neutral
236 237	Notably, the ICC score on the gastrocnemius muscle measurement at neutral position was lower than that of other measurements. We identified four division points
236 237 238	Notably, the ICC score on the gastrocnemius muscle measurement at neutral position was lower than that of other measurements. We identified four division points (the distal end of the Achilles tendon, soleus muscle-tendon junction, gastrocnemius
236 237 238 239	Notably, the ICC score on the gastrocnemius muscle measurement at neutral position was lower than that of other measurements. We identified four division points (the distal end of the Achilles tendon, soleus muscle-tendon junction, gastrocnemius muscle-tendon junction, and gastrocnemius proximal end). Among them, the black-and-
236 237 238 239 240	Notably, the ICC score on the gastrocnemius muscle measurement at neutral position was lower than that of other measurements. We identified four division points (the distal end of the Achilles tendon, soleus muscle-tendon junction, gastrocnemius muscle-tendon junction, and gastrocnemius proximal end). Among them, the black-and- white ultrasound images were less clear at the proximal end of the gastrocnemius

244	ambiguity may make grayscale histogram identification difficult, reducing the
245	measurement reliability. This is a limitation of the combination identification.
246	Significant differences in the Achilles tendon length measurements were found between
247	visual-only and combination identification at neutral and maximum dorsiflexion
248	positions using the paired t-test. This result suggests that it may be somewhat more
249	difficult to identify the division points of the tissues involved in measuring the Achilles
250	tendon length (i.e., the distal end of the Achilles tendon and soleus muscle-tendon
251	junction). The clarity of the distal end of the Achilles tendon is likely to vary depending
252	on the ultrasound incidence angle, and some of the images acquired in the present study
253	were unclear. Therefore, it is important to clearly reflect the distal end of the Achilles
254	tendon in ultrasound image acquisition to guarantee the high reliability and validity of
255	the OIM measurement.
256	Conclusion
257	This study examined the reliability of OIM by incorporating both visual-only
258	and combination identification procedures. This demonstrates that the high intra- and
259	inter-rater reliability can be obtained in almost all length measurements of the AT,
260	muscle-tendon unit, and gastrocnemius muscle at three different positions (neutral,
261	maximum dorsiflexion, and maximum plantar flexion positions). In particular, OIM

262	using combination identification showed a higher intra-rater reliability. The applicability
263	of the overlapping imaging method is demonstrated by the findings of the present study.
264	
265	Acknowledgements: No outside funding was received for this study.
266	Conflicts of interest: None in particular.
267	Author contributions
268	A.Y.: Conceptualization, Data curation, Writing-Original Draft preparation,
269	Investigation. M.H.: Methodology, Software, Writing-Reviewing and Editing. S.M.:
270	Data curation, Investigation, Writing-Reviewing and Editing. K.M.: Data curation,
271	Investigation. N.H.: Conceptualization, Writing-Reviewing and Editing.
272	
273	
274	
275	
276	
277	

References

279	1)	Yoshimura A, Inami T, Schleip R, Mineta S, Shudo K, and Hirose N. 2019. Effects				
280		of Self-myofascial Release Using a Foam Roller on Range of Motion and				
281		Morphological Changes in Muscle: A Crossover Study. Journal of Strength and				
282		Conditioning Research 35: 2444-2450. doi: 10.1519/JSC.000000000003196.				
283	2)	Yoshimura A, Schleip R, and Hirose N. 2020. Effects of Self-Massage Using a				
284		Foam Roller on Ankle Range of Motion and Gastrocnemius Fascicle Length and				
285		Muscle Hardness: A Pilot Study. J Sport Rehabil 29: 1171-1178. doi:				
286		10.1123/jsr.2019-0281.				
287	3)	Kanehisa H, Ikegawa S, Tsunoda N, and Fukunaga T. 1995. Strength and cross-				
288		sectional areas of reciprocal muscle groups in the upper arm and thigh during				
289		adolescence. Int J Sports Med 16: 54-60. doi: 10.1055/s-2007-972964.				
290	4)	Kawakami Y, Abe T, Kuno SY, Fukunaga T. 1995. Training-induced changes in				
291		muscle architecture and specific tension. Eur J Appl Physiol Occup Physiol 72: 37-				
292		43. doi: 10.1007/BF00964112.				
293	5)	Valera-Calero JA, Ojedo-Martín C, Fernández-de-Las-Peñas C, Cleland JA, Arias-				
294		Buría JL, Hervás-Pérez JP. 2021. Reliability and Validity of Panoramic Ultrasound				
295		Imaging for Evaluating Muscular Quality and Morphology: A Systematic Review.				

296		Ultrasound Med Biol 42: 185-200. doi: 10.1016/j.ultrasmedbio.2020.10.009.
297	6)	Urlando A, and Hawkins D. 2007. Achilles tendon adaptation during strength
298		training in young adults. Med Sci Sports Exerc 39: 1147-1152. doi:
299		10.1249/mss.0b013e31805371d1.
300	7)	Geremia JM, Bobbert MF, Casa Nova M, Ott RD, Lemos FdeA, Lupion RdeO,
301		Frasson VB, and Vaz MA. 2015. The structural and mechanical properties of the
302		Achilles tendon 2 years after surgical repair. Clin Biomech Bristol, Avon 30: 485-
303		492. doi: 10.1016/j.clinbiomech.2015.03.005.
304	8)	Freire B, Dias CP, Goulart NB, de Castro CD, Becker J, Gomes I, and Vaz M A.
305		2017. Achilles tendon morphology, plantar flexors torque and passive ankle
306		stiffness in spastic hemiparetic stroke survivors. Clin Biomech Bristol, Avon 41: 72-
307		76. doi: 10.1016/j.clinbiomech.2016.12.004.
308	9)	Ghaffari A, and Fatemizadeh E. 2015. RISM: Single-Modal Image Registration via
309		Rank-Induced Similarity Measure. IEEE Trans Image Process 24: 5567-5580. doi:
310		10.1109/TIP.2015.2479462.
311	10)	Cicchetti DV, and Sparrow SA. 1981. Developing criteria for establishing interrater
312		reliability of specific items: applications to assessment of adaptive behavior. $Am J$
313		Ment Defic 86: 127-137.

314	11) Leung H, Latella C, Lamon S, and Hendy AM. 2018. The Reliability of
315	Neurological Measurement in the Vastus Medialis: Implications for Research and
316	Practice. Front Psychol 9: 1857. doi: 10.3389/fpsyg.2018.01857.
317	
318	
319	
320	
321	
322	
323	
324	
325	
326	
327	
328	
329	

330 Figure legends

333 of the gastrocnemius muscle.

- 341 Figure 2. Images superimposed for length measurement of the Achilles tendon, muscle-
- 342 tendon unit, and gastrocnemius muscle.

	Step-5-1		
	(Expanded version) ROI-reference	ROI-scan range ROI-scan	
1	- Step-5-2		
			Position at maximum SED value
	(Texture features in ROI-reference)	(Gray-scale histogram in ROI-reference)	Nation of the second se
352	(Texture features at maximum SED value)	(Gray-scale histogram at maximum SED value)	(Visualized SED (similarity))

353 Figure 3. Process in [Step-5] using custom-built MATLAB-based program.

354 ROI = regions of interest, SED = squared euclid distance

362 Tables

363 Table 1. Intraclass correlation coefficient scores for intra-rater reliability in visual-only

and combination of visual and software identification (ICC 1.1).

		Visual-only	Combination
		identification	identification
Neutral	Achilles tendon	0.91	0.99
position	Muscle-tendon unit	0.84	0.98
	Gastrocnemius muscle	0.69	0.99
Max-	Achilles tendon	0.76	0.95
dorsiflexion	Muscle-tendon unit	0.89	0.98
	Gastrocnemius muscle	0.81	0.90
Max-	Achilles tendon	0.70	0.95
plantar flexion	Muscle-tendon unit	0.61	0.96
	Gastrocnemius muscle	0.90	0.94

365 Max-dorsiflexion = maximum dorsiflexion position; max plantar flexion = maximum

366 plantar flexion position.

368 Table 2. Intraclass correlation coefficient scores for inter-rater reliability in visual-only

		Visual-only	Combination
		identification	identification
Neutral	Achilles tendon	0.85	0.91
position	Muscle-tendon unit	0.84	0.96
	Gastrocnemius muscle	0.79	0.58
Max-	Achilles tendon	0.77	0.92
dorsiflexion	Muscle-tendon unit	0.89	0.89
	Gastrocnemius muscle	0.93	0.82
Max-	Achilles tendon	0.70	0.91
plantar flexion	Muscle-tendon unit	0.72	0.83
	Gastrocnemius muscle	0.88	0.89

369 identification and combination of visual and software identification (ICC 2.1).

370 Max dorsiflexion = maximum dorsiflexion position; max plantar flexion = maximum

371 plantar flexion position.

372

374 Table 3. Length of each tissue and differences in the absolute values between in visual-

		Visual-only	Combination	Value	р
		identification	identification	differences	
Neutral	Achilles tendon	7.11±1.93	7.47±1.91	0.60±0.73	<.01
position	Muscle-tendon unit	13.50±2.28	13.35±2.48	0.71±0.94	.95
	Gastrocnemius muscle	19.34±2.24	19.37±2.63	1.20±1.76	.91
Max-	Achilles tendon	7.67±1.75	7.80±1.55	0.56±0.82	.30
dorsi	Muscle-tendon unit	13.07±2.30	13.31±2.39	0.68±0.78	.13
flexion	Gastrocnemius muscle	20.11±2.39	20.17±2.53	0.78±0.87	.67
Max-	Achilles tendon	6.94±1.74	7.21±1.60	0.68±1.01	<.01
plantar	Muscle-tendon unit	13.48±2.08	13.74±1.98	0.79±1.26	.19
flexion	Gastrocnemius muscle	17.37±2.48	17.71±2.95	0.92±1.06	.06

375 only identification and combination of visual and software identification (cm).

376 Values are presented as the mean \pm standard deviation. Max dorsiflexion = maximum

377 dorsiflexion position; max plantar flexion = maximum plantar flexion position.

378