Polyunsaturated Fatty Acids Suppress Sterol Regulatory Element-binding Protein 1c Promoter Activity by Inhibition of Liver X Receptor (LXR) Binding to LXR Response Elements*

Received for publication, June 20, 2001, and in revised form, November 1, 2001
Published, JBC Papers in Press, November 2, 2001, DOI 10.1074/jbc.M105711200

Tomohiro Yoshikawa, Hitoshi Shimano‡§, Naoya Yahagi, Tomohiro Ide‡, Michiyo Amemiya-Kudo, Takashi Matsuzaka‡, Masanori Nakakuki‡, Sachiko Tomita, Hiroaki Okazaki, Yoshiaki Tamura, Yoko Iizuka, Ken Ohashi, Akimitsu Takahashii, Hirohito Sonet‡, Jun-ichi Osuma, Takeshi Gotoda, Shun Ishibashi, and Nobuohiro Yamada‡

From the Department of Metabolic Diseases, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan and 2Department of Internal Medicine, Institute of Clinical Medicine, University of Tsukuba, Ibaraki 305-8575, Japan

Previous studies have demonstrated that polyunsaturated fatty acids (PUFAs) suppress sterol regulatory element-binding protein 1c (SREBP-1c) expression and, thus, lipogenesis. In the current study, the molecular mechanism for this suppressive effect was investigated with luciferase reporter gene assays using the SREBP-1c promoter in HEK293 cells. Consistent with previous data, the addition of PUFAs to the medium in the assays robustly inhibited the SREBP-1c promoter activity. Deletion and mutation of the two liver X receptor (LXR)-responsive elements (LXREs) in the SREBP-1c promoter region eliminated this suppressive effect, indicating that both LXREs are important PUFA-suppressive elements. The luciferase activities of both SREBP-1c promoter and LXRE enhancer constructs induced by co-expression of LXRα or -β were strongly suppressed by the addition of various PUFAs (arachidonic acid > eicosapentaenoic acid > docosahexaenoic acid > linoleic acid), whereas saturated or mono-unsaturated fatty acids had minimal effects. Gel shift mobility and ligand binding domain activation assays demonstrated that PUFA suppression of SREBP-1c expression is mediated through its competition with LXR ligand in the activation of the ligand binding domain of LXR, thereby inhibiting binding of LXR/retinoid X receptor heterodimer to the LXREs in the SREBP-1c promoter. These data suggest that PUFAs could be deeply involved in nutritional regulation of cellular fatty acid levels by inhibiting an LXR-SREBP-1c system crucial for lipogenesis.

Sterol regulatory element (SRE)1-binding proteins (SREBPs)

* This study was supported by the Promotion of Fundamental Studies in Health Science of the Organization for Pharmaceutical Safety and Research (OPSR). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ To whom correspondence should be addressed: Dept. of Internal Medicine, Institute of Clinical Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan. Fax: 81-298-63-2170; E-mail: shimano-tky@umin.ac.jp.

§ The abbreviations used are: SRE, sterol regulatory element; SREBP, SRE-binding protein; PUFA, polyunsaturated fatty acid; SA, stearic acid; OA, oleic acid; LA, linoleic acid; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; AA, arachidonic acid; PPAR, peroxisome proliferator-activated receptor; PPRE, PPAR response element; LBID, ligand binding domain; LXR, liver X receptor; LXRE, LXR response element; RXR, retinoid X receptor; 22RHC, 22(R)-hydroxysterol; 9CRA, 9-cis-retinoic acid; kb, kilobases; CMV, cytomegalovirus; HEK, human embryonic kidney.
PUFA Inhibition of LXR-activated SREBP-1c Promoter

Extending our previous promoter analysis studies, we attempted to explore the mechanism for the transcriptional inhibition of SREBP-1c by PUFA. In the current study, we analyzed the suppressive effect of PUFAs on SREBP-1c promoter activity. The data indicate that PUFA inhibits binding of the LXR/RXR heterodimer to the LXR response elements (LXREs) in the SREBP-1c promoter, a process crucial for SREBP-1c expression.

EXPERIMENTAL PROCEDURES

Materials—We obtained 22(R)-hydroxycholesterol (22RHC), 9-cis-retinoic acid (9CRA), Wy-14,643, stearic acid sodium salt (SA), oleic acid sodium salt (OA), linoleic acid sodium salt (LA), eicosapentaenoic acid sodium salt (EPA), docosahexaenoic acid sodium salt (DHA), and arachidonic acid sodium salt (AA) from Sigma, Redivue [α-32P]dCTP (6,000 Ci/mmol) from Amersham Biosciences, Inc., and restriction enzymes from New England Biolabs. T0901317 (N-methyl-N-[4-(2,2,2-trifluoro-1-hydroxy-1-trifluoromethyl)-phenyl]-benzenesulfonamide), fenofibrate acid and pioglitazone were provided by Kyorin Pharmaceutical Co. Ltd. Laboratories Fournier (Paris, France), and Takeda pharmaceutical (Osaka, Japan), respectively.

Plasmids—Luciferase gene constructs containing a 2.6-kb fragment of the mouse SREBP-1c promoter (pBP1c2600-Luc) and other SREBP-1 promoter luciferase constructs were prepared as previously described (23). CMV and T7 promoter expression plasmids of human RXRα (pRXR) and PPAR response element (PPRE) luciferase reporter plasmid (pPPRE-Luc) were kindly gifts from Dr. J. Mangelsdorf. The expression plasmid of the Gal4 DNA binding domain fused to the human LXRe-ligand binding domain (LBD) (pM-LXRe) was provided from Mochida Pharmaceutical Co. Ltd. (Tokyo, Japan). A luciferase reporter plasmid containing Gal4 binding sites (p17 m8) was a gift from Dr. S. Kato.

Transfections and Luciferase Assays—Human embryonic kidney (HEK) 293 and HepG2 cells were grown at 37 °C in a modified Eagle’s medium containing 25 mM glucose, 100 units/ml penicillin, and 100 μg/ml streptomycin supplemented with 10% fetal bovine serum. Transfection studies were carried out with cells plated on 12-well plates as previously described (22). The indicated amount of each expression plasmid was transfected simultaneously with a luciferase reporter plasmid (0.25 μg) and pSV-β-gal (0.2 to 0.4 μg). The total amount of DNA in each transfection was adjusted to 1.5 μg/well with the vector DNA, pCMV-7-NotI. Each fatty acid was dissolved in water or ethanol, 22RHC and T0901317 were dissolved in ethanol, and PPAR ligands were dissolved in dimethylsulfoxide. Each agent was added to the cells immediately after transfection in Dulbecco’s modified Eagle’s medium with 10% fetal bovine serum and incubated for 24 h. After incubation, the amount of luciferase activity in transfecants was measured and normalized to the amount of β-galactosidase activity as measured by standard kits (Promega).

Gel Mobility Shift Assays—Gel shift assays were performed as previously described (22). Briefly, the entire open reading frames of mLXRα and mPPARs were amplified from the pCMV-LXRα and pCMV-mPPARα by PCR (forward primers, 5′-TGCATTAATGCTCAAGGGA and 5′-GCCATACACTTTAGTGCAAT; reverse primers, 5′-CTTCCAGAGGCAAGGAGGA and 5′-AGATCACTACATCTCTTCTTGA) and cloned into the EcoRI and NotI sites, and SalI and NotI sites of the pBluescript II SK plasmid, respectively. mLXRα, mPPARs, and hRXRα proteins were generated from the expression vectors using a coupled in vitro transcription/translation system (Promega). Double-stranded oligonucleotides used in gel shift assays were prepared by annealing both strands of the LXREb in the LXR complex of the SREBP-1c promoter (23) or rat fatty acyl-CoA oxidase PPRE (32). These were then labeled with [α-32P]dCTP by Klenow enzyme followed by purification on G50-Sephadex columns. The labeled probes (3,000–10,000 cpm) were incubated with nuclear receptor lysates (1–1.5 μg) in a mixture (20 μl) containing 10 mM Tris·HCl, pH 7.6, 50 mM KCl, 0.05 mM EDTA, 2.5 mM MgCl2, 8.5% glycerol, 1 mM dithiothreitol, 0.5 μg/ml poly(dI-dC), 0.1% Triton X-100, and 1 mg/ml nonfat milk for 30 min on ice. The DNA-protein complexes were resolved on a 4.6% polyacrylamide gel at 140 V for 1 h at 4 °C. Gels were dried and exposed to BAS2000 with BASStation software (Fuji Photo Film).

RESULTS

PUFA Suppression of Mouse SREBP-1c Promoter Activity in HepG2 and HEK293 Cells—To investigate the molecular mechanism by which dietary PUFAs decrease hepatic SREBP-1c expression, we established mouse SREBP-1c promoter luciferase reporter gene assays in HepG2 and HEK293 cells. As an initial study, we estimated the effect of supplementation of EPA to the medium (100 μM) on mouse SREBP-1c promoter (2.6-kb 5′-flanking region) activity in HepG2 cells. Cells were
co-transfected with LXRα or -β. These conditions have been shown to activate SREBP-1c promoter through LXREs (23). Consistent with previous in vivo observations that PUFA suppresses SREBP-1c expression (14), current data indicate that EPA considerably decreases the SREBP-1c promoter activity when LXR/RXR is activated (Fig. 1A). This suppressive effect of EPA was similarly observed in HEK293 cells (Fig. 1B). After these studies, effects of various PUFAs were tested in HEK293 cells co-transfected with LXRα. As shown in Fig. 2, SREBP-1c promoter activity was reduced by the addition of each PUFA (AA > EPA > DHA > LA). In contrast, saturated fatty acid (SA) had no effect, and the result of the addition of OA was minimal. These data indicate that SREBP-1c promoter assays can reflect PUFA suppression of SREBP-1c expression reported by us and others (14–16, 18) and that the cis-element(s) responsible for this PUFA effect should be located within this 2.6-kb 5′-flanking sequence of the mouse SREBP-1c gene.

FIG. 3. Identification of the polyunsaturated fatty acid-suppressive region in the SREBP1c-promoter by deletional analysis. SREBP-1c promoter luciferase reporters of various lengths (as indicated) were constructed (left panel). The HEK293 cells were transfected with each reporter plasmid, pCMV-LXRα, and reference plasmid, pSV-βgal. Either EPA (300 μM) or ethanol (EtOH) as a control was added to the cells after transfection in medium with 10% fetal bovine serum 24 h before the assay. After incubation, luciferase activity was measured and normalized to β-galactosidase activity. The effect of EPA in each construct without LXRα co-expression (Basal activity) is expressed as normalized luciferase activity (means ± S.D., three independent experiments in a duplicate assay) (right panel). bp, base pairs.

FIG. 4. Inhibitory effect of polyunsaturated fatty acid on SREBP-1c promoter activity is mediated by the LXRE complex in the SREBP-1c promoter. A, the LXRE complex containing two LXREs (LXREa and -b) was located at −249 to +148 bp in the SREBP-1c promoter as described previously (23). B, the LXRE complex in the SREBP-1c promoter was fused to a luciferase reporter plasmid, which contained an SV40 promoter (pGL2 promoter vector). This enhancer construct (pLXRE-Luc) or the indicated mutant construct was co-transfected into HEK293 cells with pCMV-LXRα or an empty vector, CMV-7 as a control, and pSV-βgal as a reference plasmid. C, pBP1c90b-Luc, which contained an SRE complex but no LXRE complex, was co-transfected into HEK293 cells with pCMV-SREBP-1c or an empty vector (CMV-7) as a control and pSV-βgal as a reference plasmid. Either EPA (100 μM) or ethanol (EtOH) as a control was added to the cells after transfection in medium with 10% fetal bovine serum 24 h before the assay. After incubation, luciferase activity was measured and normalized to β-galactosidase activity. The fold change by LXRs or their ligands in the luciferase activity (means ± S.D., three independent experiments in a duplicate assay) as compared with the respective control is shown. bp, base pairs.
PUFA Inhibition of LXRE-activated SREBP-1c Promoter

PUFA Inhibition of SRC-2 Promoter—To further investigate the molecular mechanism by which PUFAs suppress LXREs in the SREBP-1c promoter, gel shift mobility assays were performed. In *vitro* translated LXRs and RXR recombinant proteins were used to confirm binding of LXRα/RXR heterodimer to the LXRE probe as estimated by the shifted band. Fig. 7A shows that the shifted signal was enhanced by the direct addition of T0901713, an artificial LXR ligand, in a dose-dependent manner, demonstrating ligand activation of LXR binding to LXRE. The addition of PUFA inhibited the shifted binding, whereas SA and OA had a minimal effect. The rank order of the potency of the inhibitory effect of each fatty acid was similar to that observed in the luciferase assays. The inhibitory effect of AA was the strongest (Fig. 7B). Fig. 7C shows the competition between AA and LXR ligand. The signal from the LXR/RXR-LXRE complex was inhibited by the addition of AA in a dose-dependent manner, and further addition of T0901713 dose-dependently blocked the inhibitory effect of AA. These results strongly suggest that inhibition of LXRE binding to LXRE by PUFA was mediated through antagonizing the ligand effect on the LBD of LXR. For comparison, effects of PUFA on shifts of a PPRE probe by PPARα and RXR proteins were also tested (Fig. 7D). PPARα/RXR binding to PPRE was not affected by SA but was enhanced by OA, PUFA, and PPARα ligands, demonstrating that blocking the effects of PUFA on LXRE-LXRE binding are not due to nonspecific inhibition of the assays by the fatty acid moiety. The data suggest that PUFA directly inhibits LXR/RXR binding to LXRE or LXR/RXR heterodimers.

PUFA Competition with an LXR Ligand in the Activation of the BLD of LXR—To clarify the molecular mechanism by which PUFA inhibits LXRE/RXR binding to LXRE, LBD activation assays of LXRs were performed. In these assays, an expression plasmid of the LBD of LXRs fused to the Gal4 DNA binding domain was co-transfected with a luciferase reporter containing a Gal4 binding site to activate the specific ligand binding of the samples to LBD of LXRs. The addition of 22RHC, a well
known LXR ligand, increased the Gal4 activity. As shown in Fig. 8, the addition of each PUFA showed a dose-dependent inhibition of the LBD activation in a very similar pattern to the effects observed in the LXRE luciferase assay under 22RHC-activated conditions, suggesting that PUFA inhibits LXR ligand binding to LXR/RXR.

Subsequently, the PUFA inhibitory effect on SREBP-1c promoter activity was re-estimated by competition between EPA and 22RHC in the presence of an abundant amount of LXR by co-transfection (0.1 μg DNA). The addition of 22RHC without EPA resulted in a dose-dependent increase in the luciferase activity (Fig. 9, left). As shown in Fig. 9, right, in the presence of 10 and 30 μM of 22RHC, the percent inhibition curve of LXRE-LBD binding activity by EPA was shifted to the right, suggesting a competition between 22RHC and EPA in the activation of LXR.

No Involvement of RXR on PUFA Suppression of the SREBP-1c Promoter—We also investigated the possibility that PUFA inhibition of LXR/RXR binding to LXRE might be mediated through an interaction of PUFA to RXR. Fig. 10 shows that overexpression of RXR by co-transfection minimally changed LXRE-enhancer luciferase activity, suggesting that RXR is not a limiting factor for LXR/RXR binding to LXRE in this system. If PUFA could interact with RXR to modify LXR/RXR binding to LXRE, overexpression of RXR should absorb and repress this PUFA effect on LXR/RXR. However, inhibitory effects of PUFA on LXRE-enhancer activity (Fig. 10) and the 2.6-kb SREBP-1c promoter activity (data not shown) were not affected by RXR overexpression in the RXR-co-transfected cells. The addition of 9CRA, an RXR ligand, increased the effect of LXR/RXR but did not markedly affect the inhibitory efficiency of PUFA. These results indicate that the inhibitory effect of PUFA may be independent of the RXR portion of the LXR/RXR heterodimer.

DISCUSSION

In the current study, we located PUFA suppressive elements in the mouse SREBP-1c promoter. The responsible elements correspond to two LXREs that were previously identified as LXR/RXR activation sites (23). Further luciferase studies, gel shift assays, and LBD activation assays demonstrated that PUFAAs suppress SREBP-1c expression through interacting with the LBD of LXR and inhibiting LXR/RXR binding to the LXREs crucial for SREBP-1c expression as schematized in Fig. 11.
PUFA Inhibition of LXR-activated SREBP-1c Promoter

The order of inhibitory magnitude of each long chain fatty acid on SREBP-1c expression is as follows: AA > EPA > DHA > LA >> OA > SA = 0. This order was essentially consistent among the luciferase assays with the 2.6-kb SREBP-1c promoter and LXRE-enhancer as well as in gel shift and LBD activation assays. Furthermore, the same order of long chain fatty acid effects on SREBP-1c suppression has been shown in diet studies with mice.\(^2\) Furthermore, these data suggest that the inhibitory effect of PUFA is primarily attributed to their blocking effect on the LBD of LXR. The degree of unsaturation of the fatty acids might be a factor for this inhibitory effect, but whether they are n-3 or n-6 appears to be irrelevant.

The LXR/RXR complex has been established as a nuclear receptor for oxysterols, controlling regulation of excess cellular cholesterol (24–27, 30). It is interesting to speculate that oxidative modification of PUFA during incubation might make them ineligible to interact with LXR. However, the addition of several kinds of antioxidants such as probucol and vitamin E did not change the ability of PUFA to inhibit SREBP-1c activation (data not shown). Finally, even after direct addition of PUFA to the incubation mixture for gel shift assays, PUFA still showed inhibitory effects on LXR/SREBP transcriptional activity, strongly suggesting a direct action of PUFA. The current study demonstrates that PUFA can be an antagonist for LXR/PPAR. It seems that PUFA binds to the LBD of LXRs in a fashion that is competitive with an endogenous LXR ligand, thereby repressing the complex nature of this system.

Our new finding on PUFA inhibition of LXR-SREBP-1c brings up an intriguing speculation for a mechanism of energy regulation as depicted in Fig. 11. Previous work by our laboratory (23) and others (31, 36) suggests that LXR/RXR is a dominant activator for expression of SREBP-1c, a transcription factor that is a crucial factor for hepatic lipogenesis that is necessary for storage of excess energy as observed in a refed state. Meanwhile, PUFA can function as ligands for PPARs (33, 34), another transcription factor that plays a crucial role for fatty acid oxidation in an energy-depleted state such as fasting (37, 38). In a fasted state, PUFAs can be released from adipose tissue by lipolysis. Taken up by the liver, PUFAs can bind to and activate PPARs to induce β-oxidation of other saturated, or monounsaturated fatty acids. At the same time, PUFA antagonize LXR/PPAR, leading to suppression of SREBP-1c and minimizing lipogenesis. Therefore, PUFA might have efficient regulatory roles for adaptic control of two extreme nutritional states by having reciprocal effects on LXR-PPAR activation.

\(^2\) N. Yahagi, unpublished data.

Fig. 9. Competition between 22(R)-hydroxycholesterol and EPA in LXR-induced SREBP-1c promoter activity. pLXRE-Luc (0.25 µg) was co-transfected into HEK293 cells with pCMV-LXRα (0.1 µg) or an empty vector, CMV-7, as a control, and pSV-βgal, as a reference plasmid. An indicated concentration of 22RHC or ethanol (EtOH) as a control was added to the cells after transfection in medium with 10% fetal bovine serum 24 h before the assay (left panel). In the right panel, an indicated amount of EPA was also added. After incubation, luciferase activity was measured and normalized to β-galactosidase activity. The fold induction by LXRα and 22RHC in luciferase activity, as compared with control (mock-transfected cells without 22RHC addition) is shown in the left panel. The percent inhibition by EPA in the luciferase activity is shown (right panel). M, mock.

Fig. 10. Inhibitory effect of eicosapentaenoic acid on SREBP-1c promoter activity is not affected by the overexpression of RXR or 9CRA addition. pLXRE-Luc was co-transfected into HEK293 cells with pCMV-LXRα (0.1 µg), pCMV-RXR (0.5 µg), or an empty vector, pCMV-7 as a control, and pSV-βgal as a reference plasmid. EPA (100 µM), 9-cis retinoic acid (9CRA, 10 µM), or ethanol (EtOH) as a control were added to the cells after transfection in medium with 10% fetal bovine serum 24 h before the assay. After incubation, luciferase activity was measured and normalized to β-galactosidase activity. The fold induction by RXR and 9CRA in luciferase activity (means ± S.D., three independent experiments in a duplicate assay) as compared with control (MOCK and ethanol) is shown.

Fig. 11. Mechanism by which polyunsaturated fatty acids suppresses the SREBP-1c promoter activity through affecting LXR/RXR activation pathway. PUFAs suppress SREBP-1c gene expression crucial for lipogenesis by inhibiting LXR-RXR binding to the LXREs. Reciprocally, PUFAs promote PPAR-activated genes expression crucial for lipid degradation through activation of PPAR-RXR binding to the PPREs.
relative roles of transcriptional, post-transcriptional, and cleavage regulation of SREBP-1c by PUFA in vivo.

The current data suggest that PUFAs could be intricately involved in nutritional regulation by affecting the LXR-SREBP-1c system that is crucial for lipogenesis as well as having a well established role as ligands for PPARs. This might open up a new aspect of nutritional regulation involving essential fatty acids as well as energy fuels.

Acknowledgment—We thank A. H. Hasty for critical reading of the manuscript.

REFERENCES