複数生じたPCRバンドの簡易シーケンス法

中村 蓮¹⁾、北村 浩一²⁾、京都 敬祐³⁾、藤井 樹¹⁾、岩淵 由起¹⁾、 橋本 優佑¹⁾、米根 鉄矢¹⁾、池田 勝秀¹⁾、大星 航¹⁾、平田 雄哉⁴⁾、 飯塚 信義⁵⁾、古賀 豊大⁶⁾、田嶋 明彦⁷⁾、山口 良考¹⁾

Simple sequencing method for multiple PCR bands

Ren Nakamura¹⁾, Kouichi Kitamura²⁾, Keisuke Miyako³⁾, Tatsuki Fujii¹⁾, Yuuki Iwabuchi¹⁾, Yusuke Hashimoto¹⁾, Tetsuya Komene¹⁾, Katsuhide Ikeda¹⁾, Wataru Oboshi¹⁾, Yuya Hirata⁴⁾, Nobuyoshi Iitsuka⁵⁾, Toyohiro Koga⁶⁾, Akihiko Tajima⁷⁾ and Yoshitaka Yamaguchi¹⁾

Summary In clinical laboratory tests, the polymerase chain reaction (PCR) method is frequently used in the identification of disease-related genes/genomic variants and pathogenic microorganisms. Although the PCR method easily and specifically amplifies a target DNA region, unexpected non-specific products are sometimes generated depending on factors such as primer specificity and annealing temperature. For these unexpected, unknown amplification products, this study presents a simple method to identify the extra DNA fragments. Multiple PCR products can

1) 国際医療福祉大学成田保健医療学部医学検査学科	¹⁾ Department of Medical Technology and Science, Faculty
〒286-0048 千葉県成田市公津の杜4丁目13	of Health Sciences at Narita, International University of
2) 千葉大学医学部附属病院検査部	Health and Welfare, 4-3 Kozunomori, Narita, Chiba 286-
 〒260-8677 千葉県千葉市中央区亥鼻1丁目8-1 ³⁾ 国際医療福祉大学医学部ゲノム医学研究所 〒286-8686 千葉県成田市公津の杜4丁目2 ⁴⁾ 国際医療福祉大学大学院医療福祉学研究科 〒831-8501 福岡県大川市榎津137-1 ⁵⁾ 国保小見川総合病院中央検査科 〒289-0332 千葉県香取市南原地新田438 ⁶⁾ 株式会社フィジカルスクリーニング 〒270-0156 千葉県流山市西平井832-5 ⁷⁾ 帝京大学医療技術学部臨床検査学科 〒173-8605 東京都板橋区加賀2-11-1 	 8686, Japan ²¹Department of Laboratory Medicine, Chiba University Hospital, 1-8-1 Inohana, Chuo, Chiba, Chiba 260-8677, Japan ³⁵School of Medicine, International University of Health and Welfare, 4-2, Kozunomori, Narita, Chiba 286-8686, Japan ⁴⁵Department of Medical Laboratory Science, Graduate School of Health and Welfare Sciences, International University of Health and Welfare, 137-1 Enokidu, Okawa, Fukuoka 831-8501, Japan ⁵⁵Department of Central Clinical Laboratory, Omigawa General Hospital, 438 Minamiharachi-shinden, Katori, Chiba 289-0332, Japan
連絡先:山口良考	Physical screening Inc., 832-5 Nishihirai, Nagareyama, Chiba 270-0156 Japan
国際医療福祉大学成田保健医療学部医学検査学科	⁷ Department of Clinical Laboratory Science Teikyo
Tel : +81-476-20-7754	University School of Medical Technology, 2-11-1 Kaga,
E-mail : ymg@iuhwac.jp	itabashi-ku, Tokyo 173-8605, Japan
	受付日:2019年8月9日 採択日:2020年2月12日

be used to analyze the origin of each band by the following procedure: i) separation of each band by agarose-gel electrophoresis, ii) picking of the few gel pieces of each band, iii) elution of the PCR products in the gel by vortex, iv) re-PCR of the eluted DNA, and v) sequencing analysis of the re-PCR products.

Key words: PCR, Nonspecific products, Sequence, Simple method

I. 緒言

PCR (Polymerase Chain Reaction) 法は、臨床 検査における目的遺伝子の病原性多型(突然変 異) やゲノム内のコピー数多型、病原性微生物 やウイルス等を検出する際など、様々な場面で 使用される分子生物学的手法である13)。簡易に DNAを増幅させるPCR法は、設計したプライマ ーが目的の部位にアニーリングするか、他に類 似した配列がゲノムや遺伝子内にあるか、テン プレートの純度やPCR反応溶液の組成などの諸 条件により、増幅産物が得られないことや、非 特異的産物が生じたりする。非特異的産物が生 じた際の一般的な対処方法は、プライマーの再 設計やPCRの反応条件の再検討などであるが、 結果の確認までさらなる時間とコストがかかる。 非特異的産物を調べる方法に、高価な抽出キッ トやフェノールなどの劇物試薬を用いて、電気 泳動後のゲル片からPCR産物(DNA断片)を抽 出し、それぞれの塩基配列を知る方法もあるが、 大体は時間とコストがかかるプライマーの再設 計にて対応している。

本論文は、特別なキットや試薬等を用いずに、 汎用試薬で簡易に複数のPCR産物の由来を同定 できるので、安全かつ比較的短時間で検査や実 験結果の信憑性やその後の対処法を知ることが できる。つまり非特異的PCR産物の由来を確か めることで、プライマーの再設計が必要なのか、 それともPCRの反応条件をより厳しくすれば良 いのか等の判断ができ、病原性微生物の確認 PCRではプライマーを再設計することなく、目 的微生物由来の産物であるかを知ることができ る。対象とした遺伝子の1つは、多くの固形癌で 過剰発現しており、がんの増殖シグナル伝達の 起点となっている上皮成長因子受容体(EGFR: Epidermal Growth Factor Receptor)を用いた⁴。 肺がん患者においてもEGFR遺伝子の病原性多 型(変異)が確認されており、エクソン19と20 がホットスポットになっている⁵⁶)。対象にしたも う一つの遺伝子は、近年免疫や感染症、がん分 野において注目されている*Siglec*遺伝子群のうち の*Siglec-E*(Sialic acid binding Ig-like lectin E)を 用いた⁷⁾。マウス*Siglec-E*は、ヒト*SIGLEC-9*と高 い相同性を示し、肺がん患者の短期生存率、肺 気腫の罹患リスク、慢性閉塞性肺疾患の増悪リ スクなどに関与している⁸¹⁰。

これより本論文は、「ゲノムDNA由来EGFR遺 伝子」と「cDNA由来Siglec-E遺伝子」を対象に、 複数生じたPCR産物の塩基配列を確認する簡易 法を述べる。

Ⅱ. 方法と材料

1. Genomic DNAの抽出と1st strand cDNA合成

健常人のヒトロ腔細胞(日本人、男性、21歳) より、NucleoSpin[®] DNA RapidLyse (MACHEREY-NAGEL社)を用いて、ゲノムDNAを抽出した。 Aire+細胞株^{III}由来の1st strand cDNAは、RNAiso Plus (TaKaRa Bio.) にてtotal RNAを抽出し、逆 転写酵素 SuperScript IV Reverse Transcriptase (Invitrogen)を用いて合成した。

2. プライマーとPCR反応条件

EGFR (NCBI: NG_007726) のイントロン18 と19上に、それぞれForward (5'-CTGGTAACAT CCACCCAGATCA-3') とReverse (5'-AGGATGT GGAGATGAGCAGGGT-3') プライマーを設計 した。*Siglec-E*遺伝子のエキソン4と5上に、そ れぞれForward (5'-GCATCTTAAGCACGGAGG AGTGTAT-3') とReverse (5'-AAAGGTCCCCATC ATCATTTCAGA T-3') プライマーを設計した。

*EGFR*遺伝子に対してはゲノムDNA(1 ng)を、 *Siglec-E*遺伝子に対しては、50 ngのtotal RNAに 相当するcDNAをテンプレートに用い、プライ マー (終濃度: 0.3μ M、IDT)、各デオキシヌ クレオチド溶液 (終濃度: 0.2 mM each、 NIPPON GENE)、Hot-Start Gene Taq NT (酵素量: 0.6 U、NIPPON GENE)、Hot Start Taq DNA Polymerase用バッファー (終濃度: 1x、 NIPPON GENE)の反応溶液 (20μ L)を調整し、 ProFlex PCR システム (Applied Biosystems) に て35サイクルの熱反応を行った。

低電圧アガロースゲル電気泳動とゲル内PCR 産物の溶出

ゲルピックアップ用の電気泳動は、Midori Green (NIPPON Genetics) 不含の2%アガロー スゲル (Agarose Type II: SIGMA Aldrich)を用 い、低電圧 (20 V)、オーバーナイト (14時間) にて行った。泳動後、Midori Greenにて後染色 を行い、マイクロピペットのチップにて各バン ドのゲル片を少量ピックアップした。ゲル片を TE溶液 (10 mM Tris-HCl, 0.1mM EDTA, pH 7.5) 内 に 浸 し、TWIN MIXER TM-282 (AS ONE) にて2時間ボルテックス (SPEED: 4) し、ゲル 内のPCR産物を溶出させた。

4. 各PCR産物の再増幅とシーケンシング

ゲル内から溶出させたPCR産物をテンプレー ト(1µL)に用い、上記PCR反応条件にて各バ ンドを再増幅させた。電気泳動にて1本バンド が確認されたPCR産物をテンプレートに、 ForwardもしくはReverse プライマー (終濃度: 1 nM), BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems) を加えた反応溶液 (10 µL) を調整し、96℃1分(1サイクル)、96℃ 10秒+50℃ 5秒(25サイクル)のサイクルシー ケンス反応を行なった。反応終了後、ExoSAP IT (Thermofisher) を加え37℃ 10分+80℃ 1分 の 熱 処 理 を 行 な い、SAM溶 液 (40 µ L) + X-terminator (10 µ L) を加え20分間ボルテック スし、Applied Biosystems 3500/3500 xL ジェネ ティックアナライザにてPCR産物の塩基配列を 決定した。

Ⅲ. 結果

1. PCR反応における非特異的産物 EGFR遺伝子とSiglec-E遺伝子の構造と各プラ イマーのポジションをFig. 1aに示す。EGFRに 関しては、目的産物(293 bp)以外に600 bp付 近に、*Siglec-E*に関しては、目的産物(124 bp) 以外に1,000 bp付近に余分なバンドが確認され た(Fig. 1b)。EGFR遺伝子については、確認の ため2回行った。

2. 分離用低電圧アガロースゲル電気泳動とPCR 産物の溶出

低電圧アガロースゲル電気泳動にて各バンド を分離し、チップにてゲル片をピックアップし た(バンド1~4:*EGFR*、バンド5、6:*Siglec-E*) (Fig. 1c)。ゲル片を1.5 mLチューブ内のTE溶液 に浸し、ボルテックスにてPCR産物を溶出させ た。

3. 各バンドの再増幅PCRと単一バンドの確認

各バンドのDNA断片を溶出させたTE溶液と 各プライマーセットを用いて再度PCR反応を行 ない、それぞれシングルバンドが確認された (Fig. 1d)。50 bp付近に見られるバンドは、プ ライマーダイマーである。

4. シーケンスデータ

1) バンドが混在するPCR産物

2本のPCRバンドが混在する分離前サンプル (*Siglec-E*)のシーケンスデータをFig. 2aに示す。 1つの波形に、2種類のシグナルが検出されてい る。

2) EGFR

バンド1由来PCR産物のシーケンスデータ
 (Exon 19とIntron 19の境界領域)をFig. 2bに示す。解読された塩基配列を相同性検索サイト
 「NCBI/ nucleotide BLAST Search」にて検索した結果、ヒト7番染色体に座位するEGFRの
 RefseqGeneが抽出され、目的産物であることが確認された。バンド3も同様に目的産物であることが確認された。

バンド2のシーケンス結果をFig. 2cに示す。 複数の波形が雑多に観察され、BLAST Search では "No Significant Similarity Found"と相同性 のある配列は検出されなかった。

- Fig. 1 Gene structure and each steps of this method
 - a. Upper: Genomic structure of *EGFR* gene on human chromosome 7. The *EGFR* gene consist of 28 exons spanning 192.6 kb of genomic DNA. The position of primers is indicated by arrows above the introns. The PCR product is 293 bp. Lower: A schematic representation of the 1.8 kb mouse *Siglec-E* cDNA. The primers are indicated by arrows above the exon 4 and 5. The PCR product is 124 bp.
 - b. Agarose gel electropherogram of *EGFR* and *Siglec-E* gene. Upper: *EGFR*: target and extra bands, 293 bp and ca.
 600 bp respectively, were observed on Lane S1 and S2. Lower: *Siglec-E*: target and extra bands, 124 bp and ca.
 1,000 bp respectively, were observed on Lane S3. M: 50 bp Ladder Marker. N: Negative control (no-DNA).
 - c. Image of gel pick-up and vortex elution. It is shown the low voltage electropherogram (left image) and removed gel with PCR band (right image). Each band were numbered 1-4 (*EGFR*), 5 and 6 (*Sigec E*). The collected gel piece on tip and microtube with TE solution for vortex elution.
 - d. Electropherograms of re-PCR. (*EGFR*) The band 1, 3 and 2, 4 lanes were observed single band, 293 bp and ca. 600 bp respectively. (*Siglec-E*) The band 5 and 6 lanes were observed 124 bp and ca. 1,000 bp. M: 50 bp Ladder Marker. N: Negative control (no-DNA).

- Fig. 2 Sequencing analysis and homology search of EGFR gene
 - a. Sequence data of some PCR products observed in the *Siglec-E* gene. Two signals were detected in one waveform.
 - b. Upper: Sequence of band 1 "target product of *EGFR* gene". The exon 19 and introns 19 are indicated by full and dotted line, respectively. Lower: Result of BLAST Search is shown. The sequence exhibits very high homology with RefSeqGene of *EGFR* gene (NG_007726.3).
 - c. Sequence data of band 2 "extra product of *EGFR*". Upper: These waveforms were complicated peak and low signal intensity. Lower: Result of BLAST search was no significant similarity for whole human genome and recorded genes.

Fig. 3 Sequencing analysis and homology search of Siglec-E gene

- a. Upper: Sequence data of band 5 "target product of *Siglec-E* gene". The exon 4 and 5 were indicated by solid line. Lower: As a result of the BLAST Search, the sequence exhibits high homology with *Siglec-E* mRNA reference sequence (XM_006541318.3).
- b. Upper: Sequence of band 6 "extra product of *Siglec-E*". A part of the intron 4 is shown by solid line. Lower: Result of BLAST search, the sequence exhibits high homology with genomic sequence of *Siglec-E* (NC_000073.6) on chromosome 7.
- c. Direct sequencing data of the eluted PCR products from gel "band 1 of EGFR". The data of "no re-PCR" product was miscellaneous and low signal intensity.

3) Siglec-E

バンド5由来PCR産物のシーケンスデータ (Exon 4とExon 5の境界領域)をFig. 3aに示す。 解読された塩基配列のBLAST Searchの結果、 *Siglec-E*のmRNAが抽出され、目的産物である ことが確認された。

バンド6由来のシーケンスデータ(Intron 4の 一部)をFig. 3bに示す。BLAST Searchの結果、 マウス7番染色体に座位するSiglec-E遺伝子の ゲノム配列が検索された。RNA抽出時にコン タミしたゲノムDNA由来の増幅産物であるこ とが判明した。

4) 溶出直後のPCR産物

ゲル片から溶出させた直後のDNA断片を、 (再増幅させないで)直接シーケンスしたデー タをFig. 3cに示す。塩基配列は、シングルピー クにはならず、雑多な波形が検出された。

Ⅳ. 考察

PCR法における非特異的産物が混在するサン プルをシーケンスすると、Fig. 2aに示すように 1つの波形に2つ以上のシグナルが検出され、塩 基配列を決定することができない。これに対し 本論文では、複数のPCR産物をシーケンスする 簡易法の手順〔①分離 ②溶出 ③再増幅 ④ 塩基配列の決定〕を述べた。手技的に重要なポ イントは、分離過程における電気泳動を低電圧・ 長時間(20 V、14時間)で行うことである。通 常の電気泳動(100 V、25分)で分離すると、1 本のバンドをピックアップしたはずなのに、再 増幅すると、もう1本のバンドも増えてきてし まうという結果になった(Data not shown)。こ れは、肉眼では分離できていても、分子レベル では分離できていないPCR産物の各バンドへの 混在が原因と考えられ、低電圧で時間をかけて DNAをゆっくり分離させる必要があった。ま た、ゲルからPCR産物(DNA断片)を溶出する 際に特殊な試薬は必要なく、ボルテックスまた は4℃-昼夜放置などの物理的処理で十分であ った。さらに再増幅過程を経ずに、ゲルから溶 出させたPCR産物を直接シーケンスしたが、塩 基配列の決定には至らなかった(Fig. 3c)。こ れは、シーケンスするのに十分なテンプレート

量(DNA断片の分子数)ではなかったことが 考えられ、再増幅過程もポイントの一つであっ た。

複数生じたPCR産物を安全かつ簡易的に同定 する本法は、日々の検査・実験にかかる時間・ コスト・労力を、最終的に軽減させられる手法 の一つとして考えられる。

V. 結語

PCR反応時に複数本のバンドが生じ、それら バンドの由来を調べたいが、専用のキットや特 殊試薬が準備されていない場合において、簡易 に対応できる手法を検討した。本法は、低電圧・ 長時間でのDNA断片の分離操作が必要ではあ るが、特殊な装置を必要とせず、汎用試薬で複 数のPCRバンドの塩基配列を決定できる。検査 結果や実験データとする場合は、単一の目的バ ンドとなるようなプライマーの再設計やPCRの 再条件検討等が必要ではあるが、それらを解決 することにも寄与する有用な手法であると考え る。

本論文内容に関連する著者(ら)の利益相反: なし

文献

- Chien A, Edgar DB and Trela JM: Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol, 127: 1550-7, 1976.
- 2) Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA and Arnheim N: Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia, Science, 230:1350-4, 1985.
- Mullis KB and Faloona FA: Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction, Methods Enzymol, 155: 335-50, 1987.
- 4) Benbrahim Z, Antonia T and Mellas N: EGFR mutation frequency in Middle East and African non-small cell lung cancer patients: a systematic review and meta-analysis, BMC Cancer, 18: 891, 2018.
- 5) 西野和美, 西尾和人, 畑中 豊, 池田貞勝, 菓子井 達彦, 木村英晴, 後藤功一 阪本智宏, 里内美弥子, 清水淳市, 曽田 学, 蔦 幸治, 豊岡伸一, 松本慎 吾 三窪将史, 谷田部 恭, 横瀬智之, 秋田弘俊: 肺癌患者におけるEGFR遺伝子変異検査の手手引

き. 日日本肺癌学会, 第4.1版, 7-10, 2019

- 6) 畔上公子,神田真志,柳原優香,土田美紀,山川美 沙紀,北澤 綾,弦巻順子,豊崎 勝,実川口洋子, 鏡十代栄,桜井友子,木下律子,西田浩彰,川崎 隆,本間慶一,藤野良昭:当院における遺伝子検 査の取り組み-肺癌におけるEGFR遺伝子解析.県 立がんセンター新潟病院医誌,55: 27-35, 2016.
- Lübbers J, Rodríguez E and van Kooyk Y: Modulation of Immune Tolerance via Siglec-Sialic Acid Interactions. Front Immunol, 9: 2807. doi: 10.3389/fimmu.2018.02807, 2018.
- 8) 安形高志:シグレック遺伝子の多型・変異と疾患. 生化学, 89: 652-659, 2017.
- Laubli H, Pearce O, Schwarz F, Siddiqui S, Deng L, Stanczak MA, Deng L, Verhagen A, Secrest P, Lusk C, Schwartz AG, Varki NM, Bui JD, and Varki A: En-

gagement of myelomonocytic Siglecs by tumor-associated ligands modulates the innate immune response to cancer, Proc Natl Acad Sci USA, 111, 14211-14216, 2014.

- 10) Ishii T, Angata T, Wan ES, Cho MH, Motegi T, Gao C, Ohtsubo K, Kitazume S, Gemma A, Par ÉPD, Lomas DA, Silverman EK, Taniguchi N, and Kida K: Influence of SIGLEC9 polymorphisms on COPD phenotypes including exacerbation frequency, Respirology, 22, 684–690, 2017.
- 11) Yamaguchi Y, Takayanagi A, Chen J, Sakai K, Kudoh J, Shimizu N: Mouse thymic epithelial cell lines expressing "Aire" and peripheral tissue-specific antigens reproduce in vitro negative selection of T cells, Exp Cell Res, 317: 2019-30, 2011.