Prediction of the presence of atherosclerosis using high-sensitivity C-reactive protein and serotonin in apparently healthy subjects

Kazumasa Isobe¹, Tomoko Ishizu¹, Maki Maesawa², Takashi Kamimaki², Michikuni Ishijima³, Toru Nanmoku² and Yasushi Kawakami¹

Summary Aim: High-sensitivity C-reactive protein (hsCRP) is a marker of inflammation. Serotonin can be released from platelets activated by atherosclerosis. We assessed the efficiency of combined hsCRP and serotonin levels in blood for detection of atherosclerosis.

Methods: Peripheral venous blood samples were taken from 70 office clerks (19 men and 51 women, aged 21 - 68 years) for measurements of serotonin and hsCRP. The Pearson product moment correlation was used to examine the correlations among quantitative variables. ABI/PWV test results were examined for participants who consented to further examination.

Results: The mean serotonin value was 146.7 ± 57.1 ng/mL; 9 participants yielded values above the normal range (>200 ng/mL). The mean hsCRP value was 0.052 ± 0.81 mg/dL; one-fourth of the participants yielded values above the normal range (>0.04 mg/dL). A significant linear correlation between serotonin and hsCRP was found (P<0.05). By using the ABI/PWV test, we could identify atherosclerosis in 4 of the 5 participants in the high serotonin and high hsCRP group.

Discussion: hsCRP is a marker of inflammation, and serotonin, of platelet activation. Both phenomena occur in atherosclerosis, so the combination of hsCRP and serotonin could identify atherosclerosis, particularly in the early stages of the disease.

Conclusion: Combination of serotonin and hsCRP is useful in identifying atherosclerosis.

Key words: Serotonin, High-sensitivity C-reactive protein (hsCRP), Atherosclerosis, Screening

1. Introduction

Clinical and laboratory studies have shown that inflammation plays a major role in the initiation, progression, and destabilization of atheroma. C-reactive protein (CRP) is an acute-phase reactant that is important in nonspecific host defense against inflammation and is synthesized in the liver. A more sensitive CRP assay allows determination of lower levels of CRP. This is known as high-sensitivity CRP.

¹Department of Laboratory Medicine, University of Tsukuba, Tsukuba, Japan
²Division of Laboratory, University of Tsukuba Hospital, Tsukuba, Japan
³Received for Publication July 3, 2014
Accepted for Publication July 10, 2014
(hsCRP) and has been established as an inflammatory marker in a wide range of medical conditions including atherosclerosis1,3.

Atherosclerosis activates platelets. Once activated, these platelets release serotonin, and therefore, evaluation of serotonin levels in blood could be a valuable biomarker for future risk of cardiovascular events. Serotonin is a monoamine neurotransmitter, released from intestinal chromaffin cells and taken up by platelets. When the platelets bind to form a clot, they release serotonin, which then serves as a vasoconstrictor and helps to regulate hemostasis and clotting. Serotonin is also released at sites where platelets are activated, such as at atherosclerotic vascular lesions. Serotonin levels, particularly in platelet-poor plasma, were reported to be a useful marker of atherosclerotic disease4,5.

Atherosclerosis is a specific form of a chronic inflammatory process resulting from interactions between plasma lipoprotein, cellular components, and the extracellular matrix of the arterial wall6. Lately, the ankle-brachial pressure index/pulse wave velocity (ABI/PWV) test, as a parameter of aortic stiffness, has been used to evaluate progression of atherosclerosis8,10. Tanaka et al reported that a significant positive relation exists between brachial-ankle pulse wave velocity (baPWV) and carotid-ankle wave velocity (cfPWV), the most recognized index of arterial stiffness11.

In this study, we assessed the possibility that hsCRP and serotonin are useful markers of atherosclerosis in apparently healthy men and women.

2. Methods

2.1. Research participants

We recruited 70 healthy volunteers (19 men and 51 women, aged 21 - 68 years) who had no physical signs of disease and were not taking any medication. The participants were employees of the Tsukuba University Hospital. At entry, all participants provided written informed consent to participate in the study. The study protocol was approved by the committee of the Tsukuba University Hospital (H24-77).

2.2. Serotonin and hsCRP measurements

Peripheral venous blood samples were collected into tubes containing EDTA or serum separator gel. Serotonin was determined in EDTA whole blood, and hsCRP, in sera. hsCRP levels were measured using the latex-enhanced immunoturbidimetric method on a nephelometric analyzer. Serotonin levels were measured by HPLC using a fluorescence detector.

The reference values in our laboratory were <0.04 mg/dL for hsCRP and <200 ng/mL for serotonin.

2.3. Measurement of atherosclerosis8,10

The ABI/PWV test was conducted in 14 participants who consented to further examination. The subjects reclined on the examination table before the examination to obtain hemodynamic stability.

The ABI and PWV were measured using an automated device (BP-203RPE III form PWV/ABI; Omron-Colin, Kyoto, Japan). The average ABI/PWV measurements were used for the analysis.

2.4. Statistical analysis

The Pearson product moment correlation was used to determine correlations among the quantitative variables.

3. Results

3.1. hsCRP and serotonin distribution

As shown in Figure 1A, the distribution of hsCRP was highly skewed to the right: 74% of the participants yielded hsCRP levels below 0.04 mg/dL. The mean hsCRP value was 0.052 ± 0.081 mg/dL, and the median value was 0.022 mg/dL; 18 participants (26%) yielded levels higher than 0.04 mg/dL, findings consistent with those of an earlier report3,7.

As shown in Figure 1B, the distribution of serotonin showed 2 peaks, one large (distributed from 80 to 200 ng/mL) and one small (250 to 280 ng/mL), a finding consistent with those of other reports5,6. The mean serotonin value was 146.7 ± 57.1 ng/mL, and the median value was 136.0 ng/mL. The second small peak was around 250 ng/mL, and 9 participants (13%) yielded levels higher than 200 ng/mL, suggesting presence of platelet activation.
Fig. 1A

Fig. 1B

Fig. 1 hsCRP and serotonin levels in healthy participants
The distribution of hsCRP was highly skewed to the right: 26% of the participants yielded hsCRP levels higher than 0.04 mg/dL. The distribution of serotonin showed 2 peaks, one large and one small. Thirteen percent of the participants yielded levels higher than 200 ng/mL.
3.2. Correlation between hsCRP and serotonin

As shown in Figure 2, a significant linear correlation between the hsCRP and serotonin levels was found ($r=0.271$, $P<0.05$). We could classify the high-serotonin group (>200 ng/mL) into 2 subgroups, one with accompanying high hsCRP (>0.04 mg/dL) and the other without it (<0.04 mg/dL).

3.3. ABI/PWV test

As shown in Table 1, we could identify 5 cases (cases 5 to 9) of atherosclerosis using the PWV test results with reference to age and sex. Four (cases 5 to 8) of those 5 atherosclerosis cases belonged to the high serotonin (3 cases had serotonin levels >200 ng/mL and 1 case had a level of 191 ng/mL) and high hsCRP (>0.04 mg/dL) group. The remaining case (case 9) was probably a case of progressive atherosclerosis. In all of 14 cases, the ABI test results were within normal levels. Although case 1 had higher hsPWV (1329 cm/s), he was not diagnosed as having atherosclerosis because of his older age (59 years).

4. Discussion

In the present study, we measured hsCRP and serotonin levels in 70 healthy individuals. Even though apparently healthy, one-fourth of the participants showed high levels of hsCRP, indicating the presence of some kind of inflammation. However, the causes of inflammation are so diverse that it is hard to identify atherosclerosis by measurement of the hsCRP level alone.

The meaning of high serotonin levels is also diverse, including personal difference, platelet activation, and, in rare cases, carcinoid tumors. Hara et al reported that platelets are overactivated to release serotonin when renal damage is advanced. We speculated that individuals with high levels of serotonin can be classified into 2 groups: those with accompa-
Table 1 Participants’ characteristics

<table>
<thead>
<tr>
<th>cases</th>
<th>sex</th>
<th>age</th>
<th>Serotonin (ng/mL)</th>
<th>hsCRP (mg/dL)</th>
<th>ABI</th>
<th>baPWV (cm/s)</th>
<th>Systolic Blood Pressure (mmHg)</th>
<th>Atherosclerosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>59</td>
<td>260</td>
<td>0.027</td>
<td>1.27</td>
<td>1329</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>W</td>
<td>38</td>
<td>236</td>
<td><0.004</td>
<td>1.09</td>
<td>1072</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>W</td>
<td>37</td>
<td>214</td>
<td>0.007</td>
<td>0.96</td>
<td>1182</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>W</td>
<td>34</td>
<td>398</td>
<td>0.119</td>
<td>0.93</td>
<td>1065</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>W</td>
<td>37</td>
<td>273</td>
<td>0.47</td>
<td>1.04</td>
<td>1371</td>
<td>128</td>
<td>present</td>
</tr>
<tr>
<td>6</td>
<td>W</td>
<td>46</td>
<td>262</td>
<td>0.09</td>
<td>1.15</td>
<td>1497</td>
<td>125</td>
<td>present</td>
</tr>
<tr>
<td>7</td>
<td>W</td>
<td>39</td>
<td>247</td>
<td>0.126</td>
<td>1.11</td>
<td>1249</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>W</td>
<td>44</td>
<td>191</td>
<td>0.119</td>
<td>1.14</td>
<td>1430</td>
<td>131</td>
<td>present</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>61</td>
<td>137</td>
<td>0.145</td>
<td>1.18</td>
<td>1945</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>33</td>
<td>126</td>
<td>0.135</td>
<td>1.11</td>
<td>879</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>W</td>
<td>27</td>
<td>112</td>
<td>0.107</td>
<td>1.15</td>
<td>1005</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>W</td>
<td>50</td>
<td>88</td>
<td>0.137</td>
<td>1.02</td>
<td>1214</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>W</td>
<td>48</td>
<td>50</td>
<td>0.212</td>
<td>1.16</td>
<td>1234</td>
<td>143</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>W</td>
<td>53</td>
<td>25</td>
<td>0.221</td>
<td>1.06</td>
<td>1154</td>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>

Presence of atherosclerosis was diagnosed by PWV values, considering age and sex.

nying atherosclerosis and those without.

Hirowatari et al developed a more sensitive assay system for plasma serotonin and reported that the level of serotonin in platelet-poor plasma (PPP) correlated significantly with the level of HDL-C. They also reported that the PPP/WB-serotonin ratio also correlated with Framingham 10-year risk scores (FRS). Rifai et al reported that LDL-C combined with CRP had good ability to predict future cardiovascular disease. Memon et al also reported that fibrinogen combined with CRP had good ability to verify coronary artery disease.

hsCRP is a marker of inflammation and serotonin, a marker of platelet activation. Both phenomena occur in atherosclerosis; therefore, combination of hsCRP and serotonin could identify atherosclerosis, particularly in the early stages of the disease.

Conflicts of Interest

There are no conflicts of interest associated with this manuscript.

Acknowledgements

We are grateful to Dr Yuji Hirowatari, Dr Hakuo Takahashi, and Dr Yutaka Yatomi for their helpful comments. We thank the medical technologists of the University of Tsukuba for providing blood samples and the office clerks of the university who participated actively in this study. Ms Flaminia Miyamasu, a native-speaking English teacher, provided many valuable comments regarding the English of this paper.

References