2014/5/16 (第4回) Cプリント

Rapidly progressive glomerulonephritis: defined as a decrease in the glomerular filtration rate by more than 50% in a 3-month period

Table 2. Causes of Rapidly Progressive Glomerulonephritis.*			
Anti–glomerular basement membrane disease Antineutrophil cytoplasmic antibody–associated vasculitis			
Immune-complex-mediated glomerulonephritis			
In patients with normal complement levels:			
IgA nephropathy			
Henoch–Schönlein purpura			
Fibrillary glomerulonephritis, immunotactoid glomerulonephritis			
In patients with low complement levels:			
SLE			
Poststreptococcal glomerulonephritis			
Membranoproliferative glomerulonephritis			
Infections (HCV, HBV, HIV)			
Genetic			
Collagen vascular disease (SLE, Sjögren's syndrome)			
Monoclonal gammopathies			
Endocarditis			
Cryoglobulinemia			
Type I (may be associated with myeloma, lymphoma, or Waldenström's macroglobulinemia)			
Type II (may be associated with myeloma, lymphoma, Waldenström's macroglobulinemia, HCV, or Sjögren's syndrome)			
Type III (may be associated with HCV or endocarditis)			

Clinical diagnosis: acute glomerulonephritis, possibly due to Henoch-Schonlein purpura or cryoglobulinemia

Occasionally, the rash of Henoch-Schnlein puroura appears after the gastrointestinal and renal manifestations.

The diagnostic tests should be testing for the presence of a cryoglobulin and a paraprotein (M protein) on a specimen of warm blood and a renal biopsy.

The absence of an M component could be explained by the specimen's being at room temperature, which would lead to precipitation of the M component as part of the cryoprecipitate.

Anatomical diagnosis: Type II cryoglobulinemia with acute glomerulonephritis and renal vasculitis, monoclonal B-cell population of unknown significance

Glomerular pseudothrombi are pathgnomonic for cryoglobulinemic glomerulonephritis. Key features supporting a diagnosis of cryoglobulinemic glomerulonephritis are the predominance of a macrophages in the glomerular infiltrate and a tubular substructure on electron microscopy. (Fibrin: PAS- pseudothrombi: PAS+) Cryoglobulinemia

Cryoprecipitates: blood proteins which precipitate at temperatures lower than 37°C

Cryoglobulin: the precipitate from an individual's serum and plasma

consists of immunoglobulins and complement components

Cryofibrinogen: the precipitate from plasma only

Cryoglobulinemia has three types.

Type I: monoclonal immunoglobulin (Ig)

Type II: mixed monoclonal Ig and polyclonal Ig with rheumatoid factor activity Type III: mixed polyclonal Ig

	Туре І	Туре II	Type III	
Associated diseases	LPD >>>	HCV >>	HCV >>	
	MGUS >	> CTD	CTD >>	
	Idiopathic	> Idiopathic	Idiopathic	
		> LPD > other infections	> Other infections	
Symptoms and signs				
Purpura	+	+++	+++	
Gangrene/acrocyanosis	+++	+ to ++	±	
Athralgias >> arthritis	+	++	+++	
Renal	+	++	+	
Neurologic	+	++	++	
Liver	±	++	+++	

Treatment: high-dose glucocorticoids and cyclophosphamide if the patients have nephropathy or renal complications

Treatment:

methylprednisolonesodium succinate followed by prednisone taper

 \rightarrow plasmapheresis because of a rising creatinine level

 \rightarrow cyclophosphamide and rituximab because apheresis can lead to rebound, in which cryoglobulin production increases after the cessation of apheresis

 \rightarrow the symptoms improved, but...

Two months later, cutaneous purpura appeared over the

patient's legs, and night sweats developed!!

 \rightarrow The rash resolved after a single dose of rituximab, but she continued to have mild influenza-like symptoms.

 \rightarrow Three months later, oral cyclophosphamide and prednisone were begun because of increasing creatinine levels and worsening constitutional symptoms of malaise, fatigue and night sweats.

 \rightarrow The constitutional symptoms improved, but two months later the patient had increasing shortness of breath!

→cyclophosphamide was stopped and bortezomib was started!

 \rightarrow The patient now has a good quality of life with maintenance prednisone/

Teaching points

- ① Even though the patient's presentation is missing some key findings such as the rash, these features may evolve over time.
- ⁽²⁾ In rapidly progressive glomerulonephritis, the empirical therapy (high doses of methylprednicolone) outweighs the risk of harm.