The 15th Database Quality Improvement Conference Program

Date : September 25, 2021

Venue: Zoom (ID: 869 2435 6061 PW: 20210925)

10:30-10:35 (JST)

Opening remark

Satoshi Kusuda

Kyorin University

10:35-11:00

Annual report Satoshi Kusuda Kyorin University

11:00-11:50

Clinical Trials in Newborn Infants - The Case for URGENT International Collaboration Prof. Ju Lee Oei The Royal Hospital for Women University of New South Wales Australia

11:50-12:40

Trends in outcomes among very low birth weight infants in Japan from NRNJ database Masanori Fujimura Osaka Women's and Children's Hospital

12:40-13:10 Lunch

-

13:10-13:20

Guidance on changes of variables of database (Japanese) Satoshi Kusuda Kyorin University 13:20-14:50

Learn from hospitals with lowest incidence of sepsis among extremely preterm infants (Japanese)

Moderators

Shinya Hirano Osaka Women's and Children's Hospital

Hidehiko Nakanishi Kitasato University

Tetsuya Isayama National Institute for Child Health and Development

Presenters

Akita Red Cross Hospital Anjo Kosei Hospital Niigata City Hospital

14:50-15:00

Final results of INTACT study (Japanese) Satoshi Kusuda Kyorin University

15:00

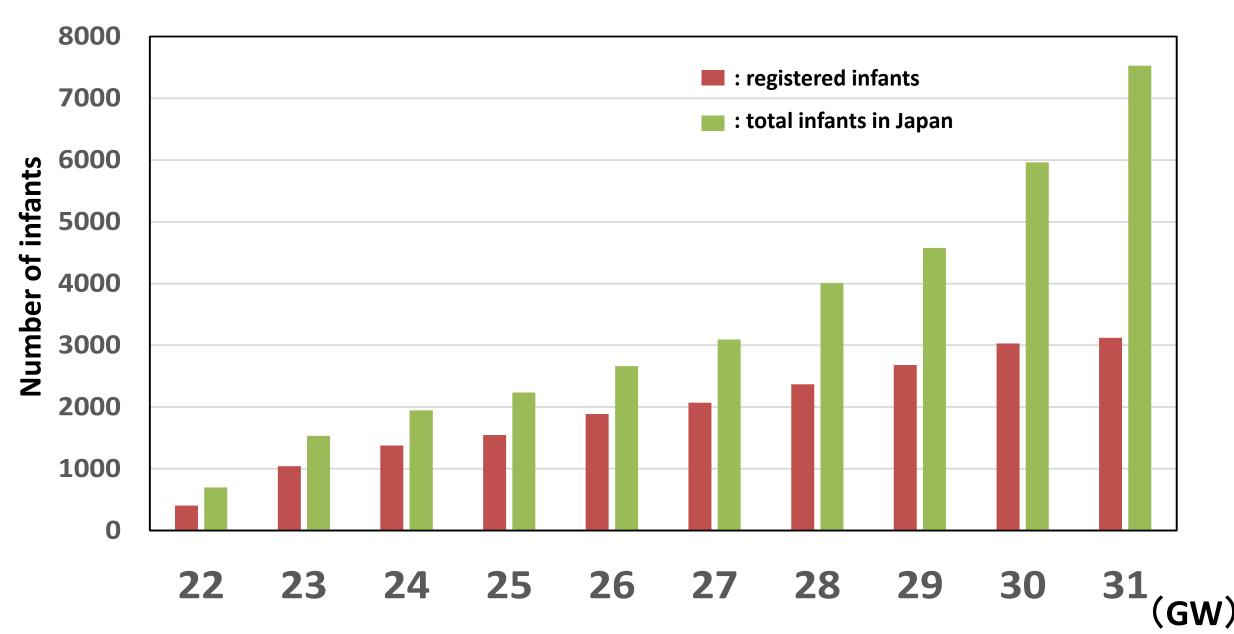
Closing remarks

Neonatal Network Database: Annual Report

Neonatal Research Network of Japan Satoshi Kusuda

Development of the network database for VLBW infants in Japan

- Infants weighing at or less than 1500g (including all infants born before 32 GW since 2014)
- Definition of diseases and interventions in the operation manual.
- Morbidities collected until discharge from NICU
- Follow-up data at 1.5, 3, and 6years of age
- Started in 2003


Annual Report 2021

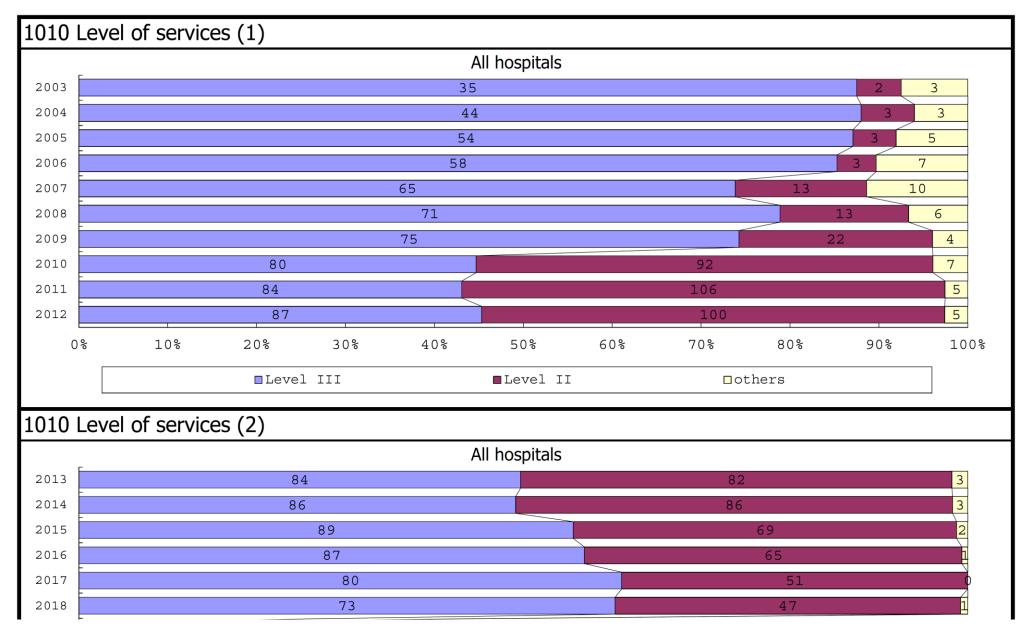
- Data summarized between 2003 and 2018.
- All analyzed data are available online (<u>http://plaza.umin.ac.jp/nrndata/</u>).
- Facility names are anonymous.
- Number of facilities participating is 220.
- Total number of registered infants is 76,444.
- In 2018, 4,154 infants were registered.

Number of infants born in Japan vs registered infants in the database

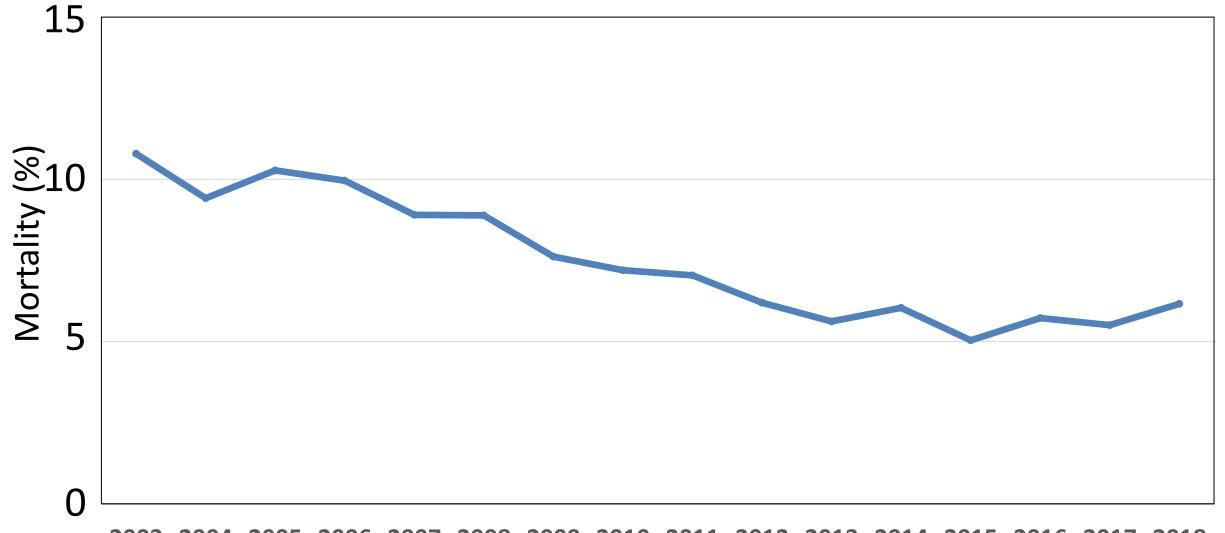
Coverage of NRNJ database by GW last 5 years

Participating hospitals (as of year 2018)

Sapporo City Hospital Asahikawa Kosei Hospital Engaru Kosei Hospital Kushiro Red Cross Hospital Obihiro Kosei Hospital Tenshi Hospital NTT East Sappro Hospital Nikko Kinen Hospital Nayoro City Hospital Sapporo Prefecture Medical University Asahikawa Medical University Aomori Prefecture Central Hospital Iwate Medical University Iwate Prefecture Ohfunato Hospital Iwate Prefecture Kuji Hospital Iwate Prefecture Ninohe Hospital Sendai Red Cross Hospital Tohoku University Akita Red Cross Hosptai Akita University Tsuruoka City Shonai Hospital Yamagata University Yamagata Prefecture Central Hospital Fukusima Prefecture Medical University Takeda General Hospital National Fukushima Hospital Tsukuba University Tsuchiura Kyodo Hospital Ibaraki Children's Hospital Dokkvo Medical University Jichi Medical University Ashikaga Red Cross Hospital Gunma Prefecture Children's Hospital Kiryu Kosei General Hospital Ohta General Hospital Gunma University Saitama Medical University Saitama Prefecture Children's Hospital National Nishisaitama Central Hospital Saitama Medical University Medical Center Kawaguchi City Medical Center Jichi Medical University Saitame Medical Center Asahi Central Hospital Chiba City Kaihin Hospital Kameda General Hospital Tokyo Women's Medical University Yachiyo Medical Center Juntendo University Urayasu Hospital Narita Red Cross Hospital Tokyo Metropolitan Children's Medcial Center Tokyo Women's Medical University Aiiku Hospital Nihon University National International Medical Center Tokyo Medical Universitiy Teikyo University Showa University Japan Red Cross Hospita National Center for Child Health and Development Tokyo Metropolitan Otsuka Hospital Tokyo University Toho University Tokyo Metropolitan Bokuto Hospital Tokyo Jikei Medical University Tokyo Medical and Dental University Saint Luku Hospital Juntendo University Sanikukai Hospital Katsushika Red Cross Hospital Yokohama Rosai Hospital Yokohama City Universtiv Medical Center Marianna Medical University Kanagawa Children's Medical Cente Tokai University


Kitazato University

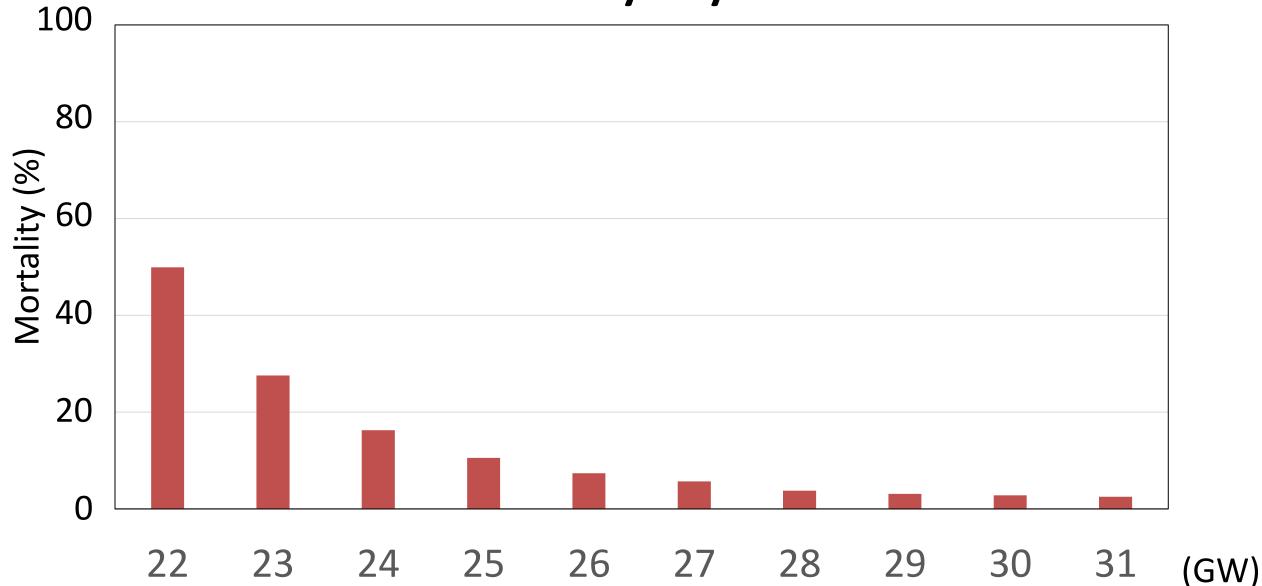
Yokosuka Kyosai Hospita Odawara City Hospital Nippon Medical School Musashi Kosugi Hospital Yokohama City Hospital Saiseikai Eastern Yokohama Hospital Yokohama Medical Cente Yamanashi Prefecture Central Hospital Nagano Children's Hospital Shinshu University lida City Hospital National Shinshu Ueda Medical Center Saku General Hospital Nigata University Niigata Central Hospital Niigata City Hospital Nagaoka Red Cross Hospital Koseiren Takaoka Hospital Toyama Prefectural Central Hospital Toyama University Ishikawa Prefectural Central Hospital Kanazawa Medical University Kanazawa Medcial Center Fukui Prefectural Hospital Fukui University Gifu Prefectural Medical Center Oogaki City Hospital National Nagara Medical Center Takayama Red Cross Hospital Seirei Hamamatsu Hospital Shizuoka Saiseikai Hospital Shizuoka Children's Hospital Hamamatsu Medical University Numazu City Hospital Yaizu City Hospital Fujieda City Hospital Nagoya Red Cross Daini Hospital Nagoya University Nagoya Red Cross Daiici Hospital Toyohashi City Hospital Nagova City Seibu Medical Cneter Fujita Medical University Anjokosei Hospital Koritsu Tosei Hospital Komaki City Hospital Toyota Memorial Hospita Okazaki City Hospital Handa City Hospital Konankosei Hospital Nogoya Chity University Aichi Medical University National Mie Cnetral Medical Center Ise Red Cross Hospital Yokkaichi City Hospital Otsu Red Cross Hospital Shiga Medical University Nagahama Red Cross Hospital Uji Tokushukai Hospital Japan Baptist Hospital Kyoto University Kyoto Red Cross Daiichi Hospital National Maizuru Medical Center Fukuchiyama City Hospital Kyoto Prefecture Medical University Kyoto City Hospital Mitubishi Kyoto Hospital Yodogawa Christian Hospital Osaka Women's and Children's Hospital Osaka University Takatuski General Hospital Kansai Medical University Osaka City General Hospital Osaka City Sumiyoshi Hospital Aizenbashi Hospital


Toyonaka City Hospital

National Cerebral and Cardiovascular Center Kitano Hospital Saiseikai Suita Hospital Chifune Hospital Bell Land General Hospital Rinku General Hospital Osaka Red Crsoo Hospital Yao City Hospital Hannan Central Hospita Osaka General Medical Cen Osaka City University Kobe Children's Hospital Kobe University Kakogawa City Hospital Saiseikai Hyogo Hospital Kobe City Medical Center Central Hospital Hyogo Medical University Himeji Red Cross Hospital Toyooka General Hospital Hyogo Prefectural Awaji Medical Center Nara Prefecture Medical University Wakayama Prefecture Medical University Tottori Prefectural Central Hospital Tottori University Shimane Prefectural Central Hospital Matue Red Cross Hospital Kurashiki Central Hospital Tsuyama Central Hospital Kawasaki Medical University National Okayama Medical Cneter Okayama Red Cross Hospital Hiroshima City Central Hospital Hiroshima Prefectural Hospital Hiroshima University Tsuchiya General Hospital National Kure Medical Cente Yamaguchi University Yamaguchi Prefecture Medical Center Tokushima University Tokushima City Hospital Kagawa University Shikoku Medical Center for Children and Adults Matsuyama Red Cross Hospital Ehime Prefectural Cntral Hospital Kochi Health Science Cente Saint Maria Hospital National Kyushu Medical Center Kurume University Kitakyushu City Hospital University of Occupational and Environmental Health Japan Fukuoka University Kyushu University lizuka Hospital National Kokura Medical Center Fukuoka City Children's Hospital National Saga Hospital Nagasaki University National Nagasaki Medical Cneter Saseho City Hospital Kumamoto City Hospital Kumamoto University **Oita Prefectural Hospital** Almeida Memorial Hospita Nakatsu City Hospital Miyazaki University National Miyakonojo Hospital Kagosima City Hospital Imakyure General Hospital Okinawa Prefectural Nanbu Medcial Center/Nanbu Child Medical Center Okinara Prefectural Central Hospital Naha City Hospital Okinawa Red Cross Hospital

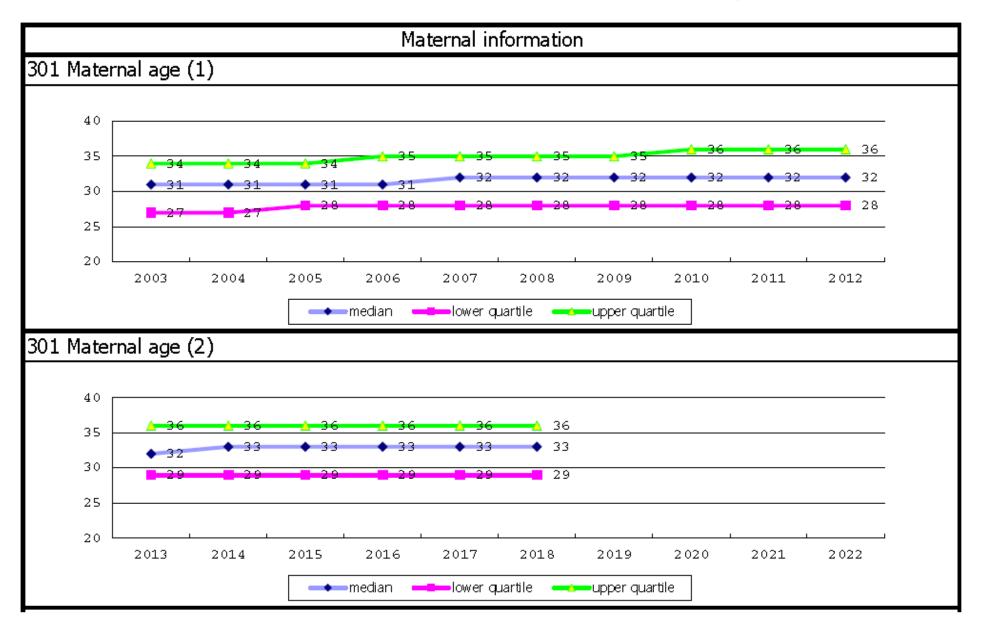
Trends in Levels of participating hospitals


Trends in Mortality

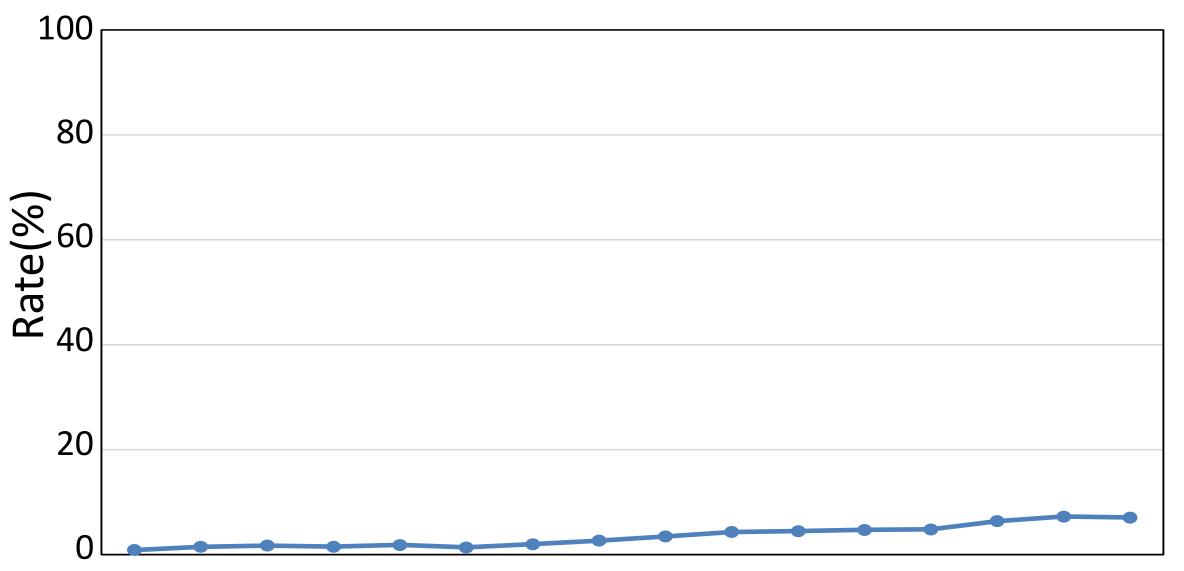

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

(Year)

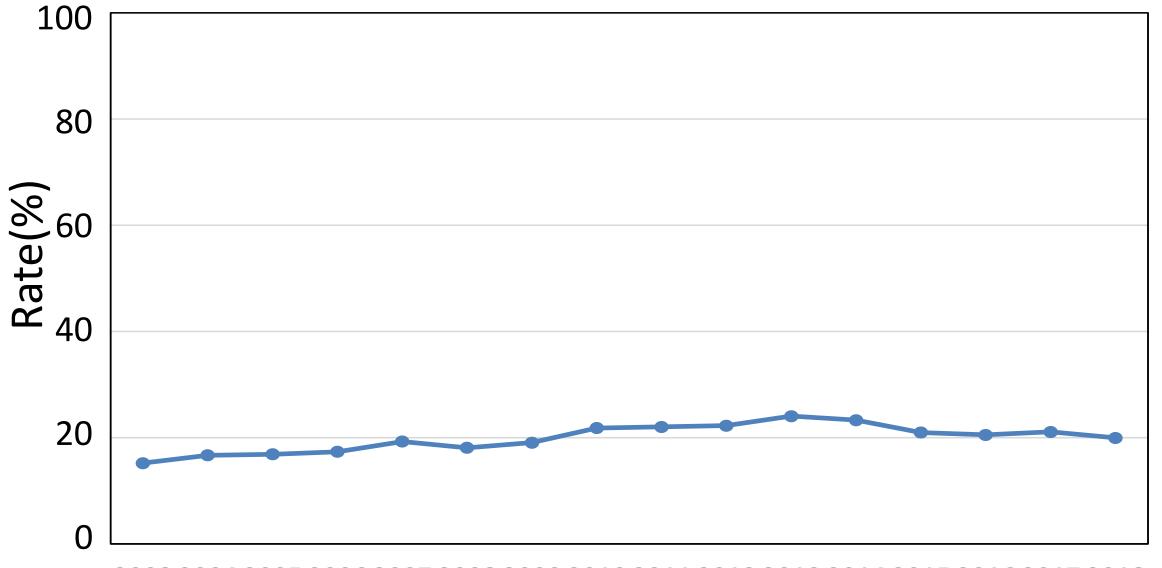
Trends in Mortality by GW

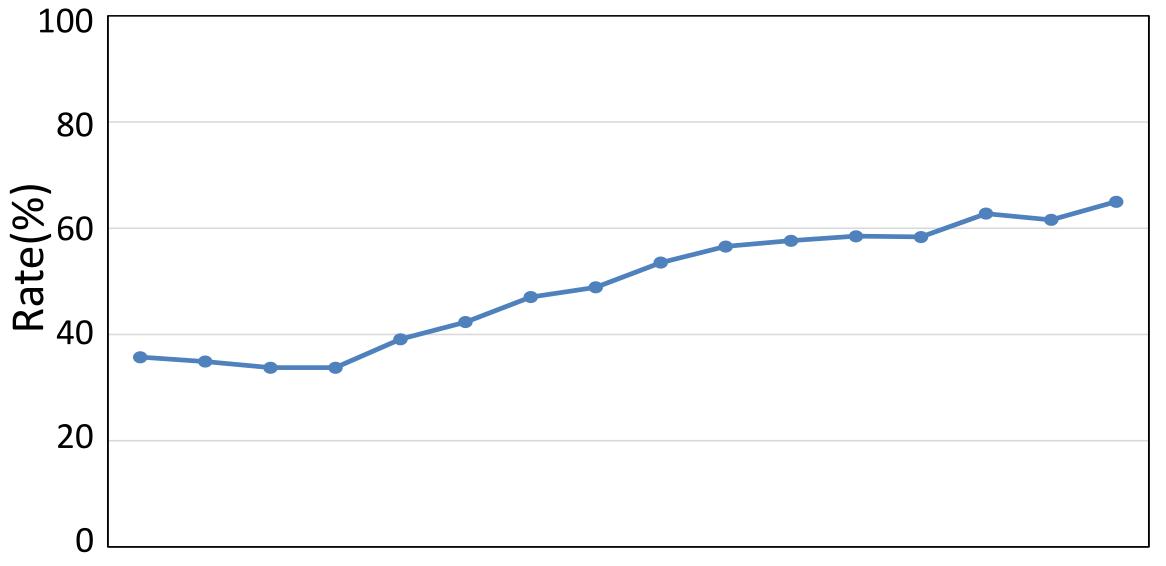


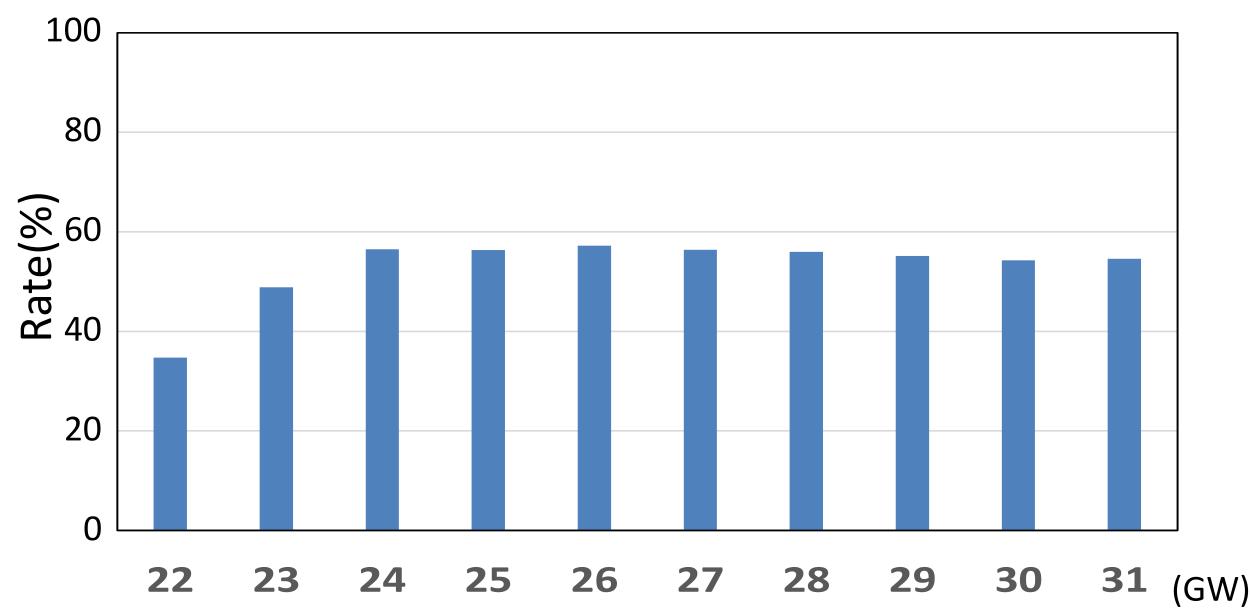
Mortality by GW

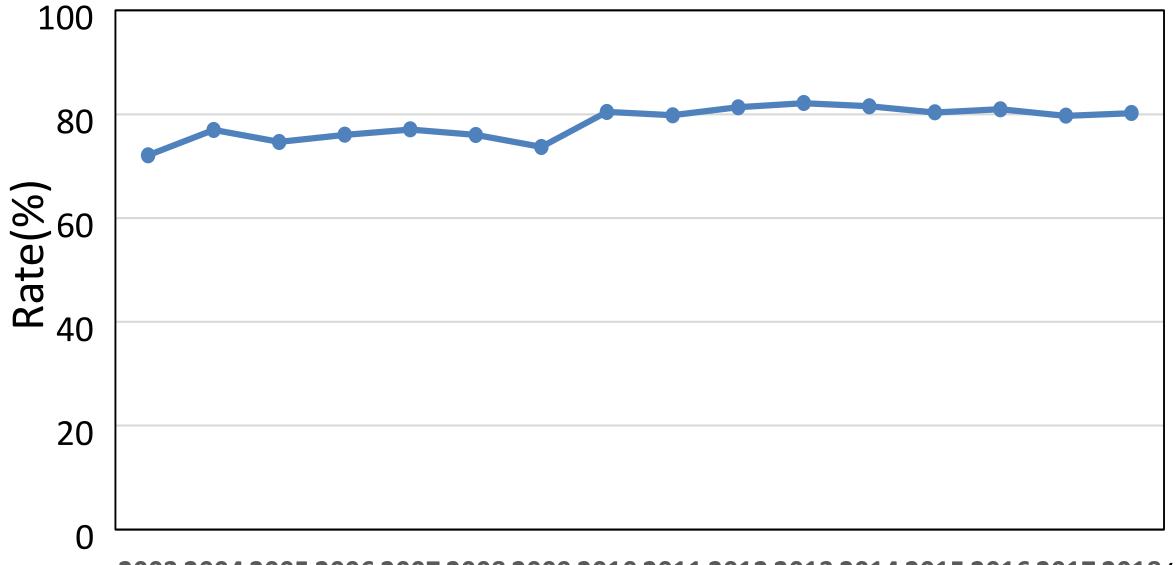


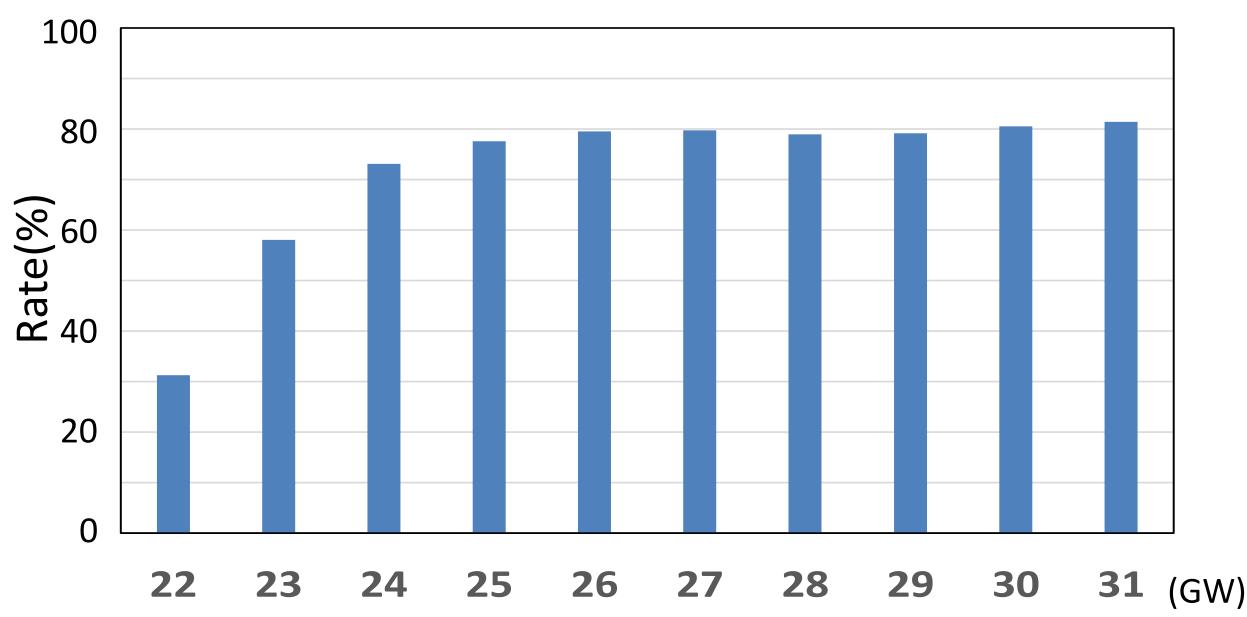
Trends in Japanese network

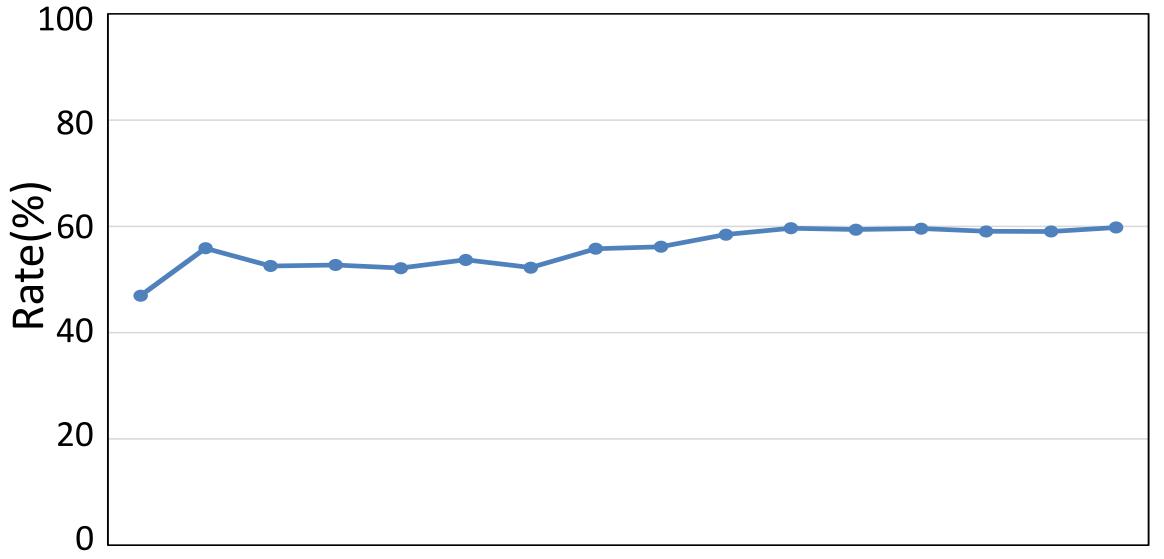

Trends in maternal age

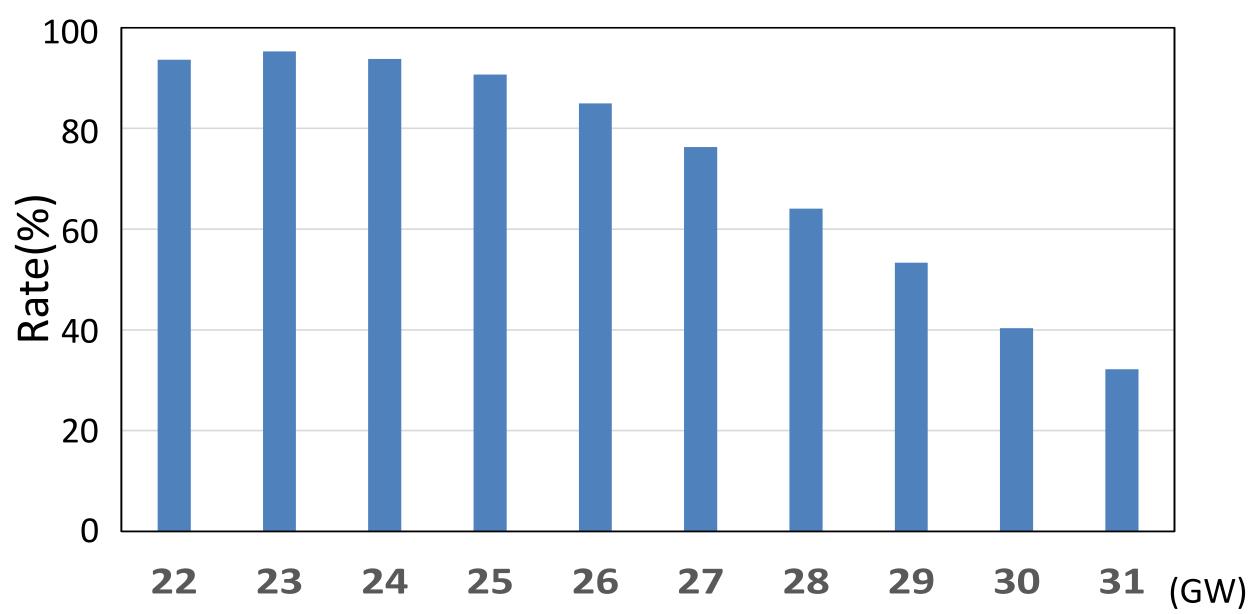

Trends in maternal diabetes mellitus

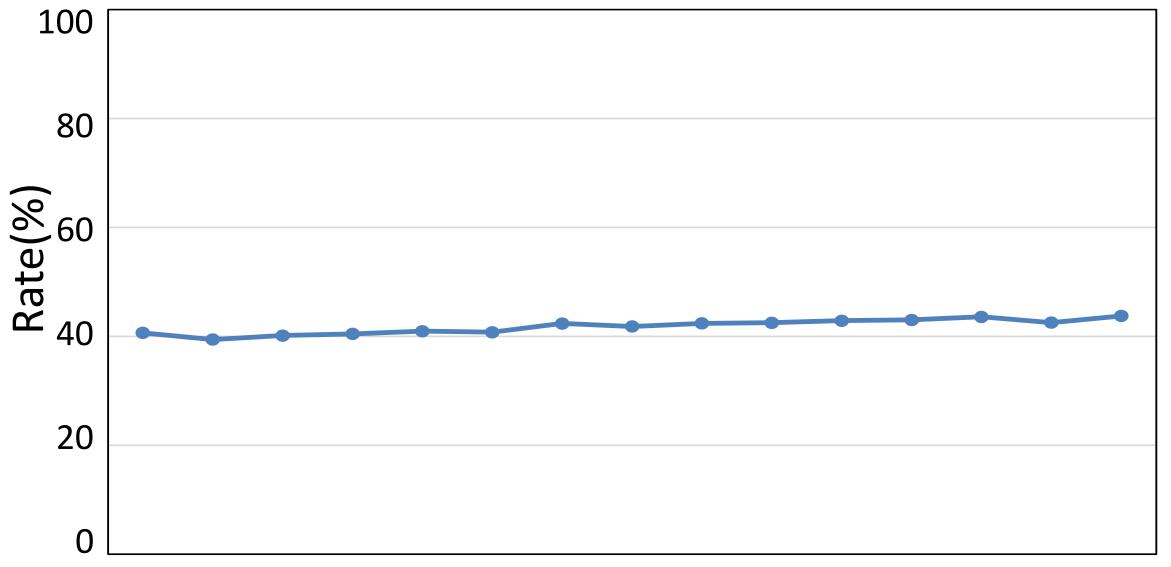

Trends in maternal hypertensive disorders

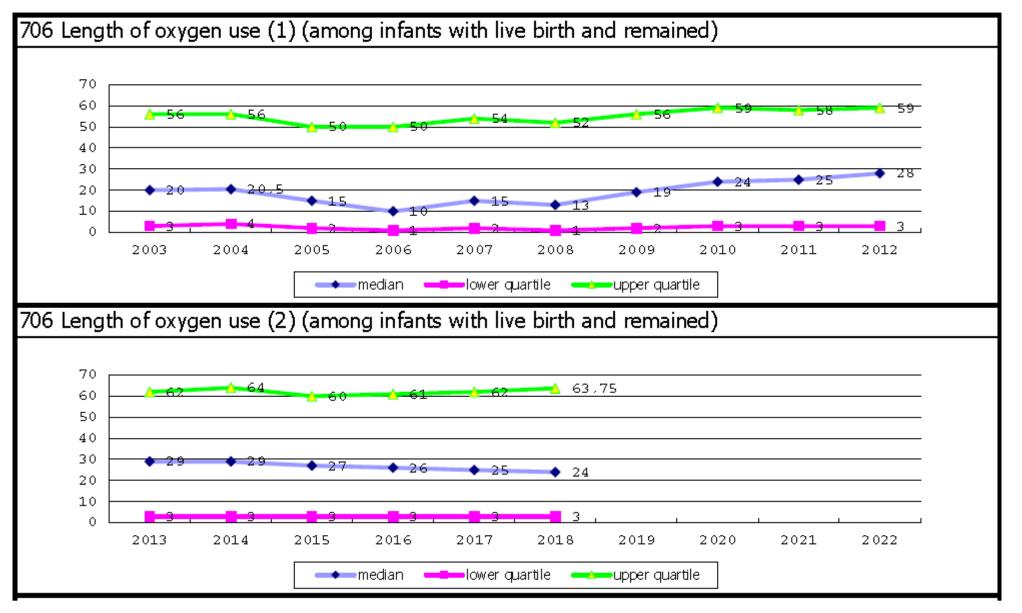

Trends in maternal glucocorticoid use

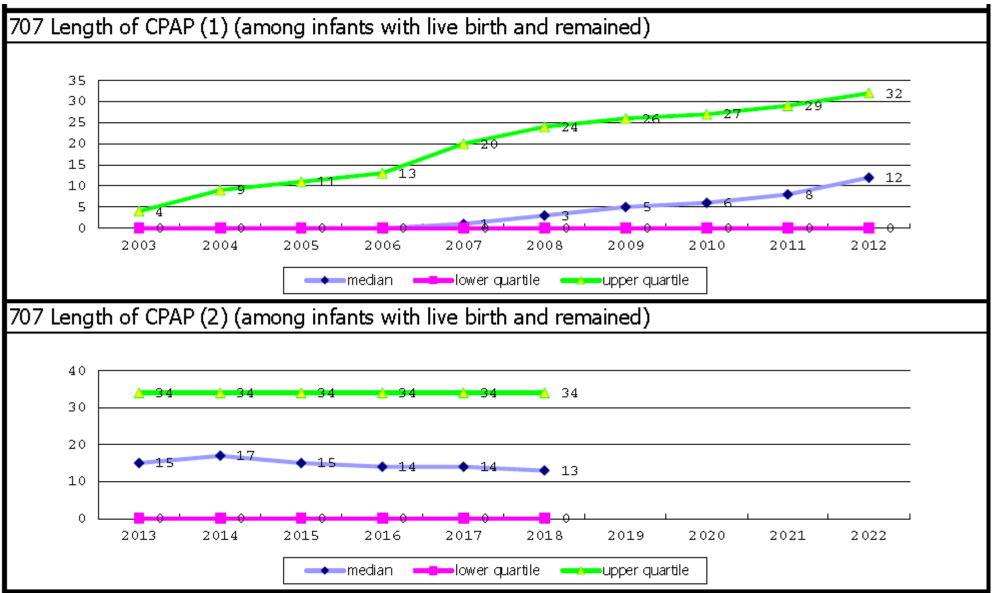

Maternal glucocorticoid use rates by GW

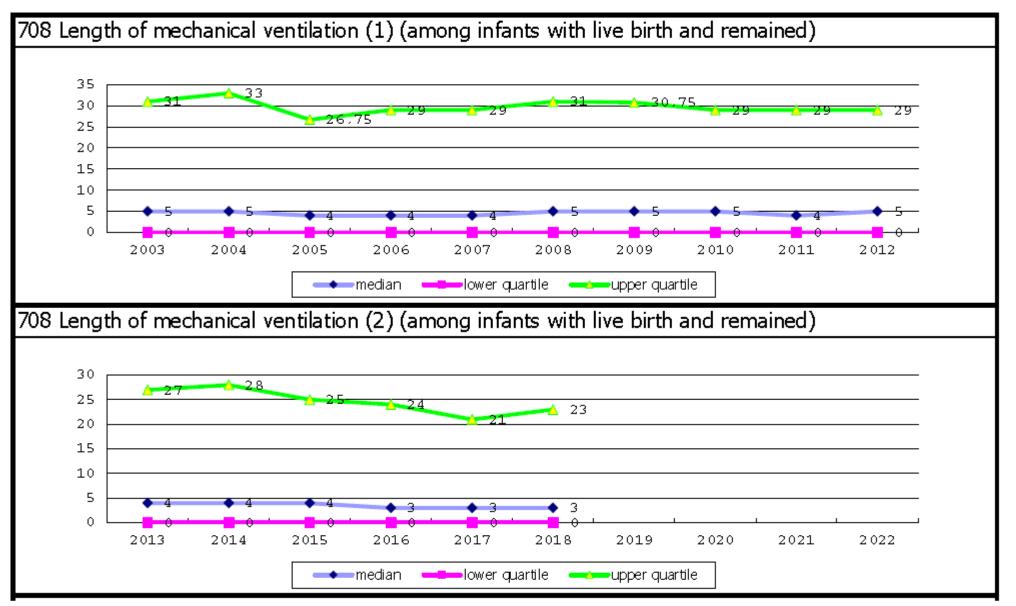

Trends in Cesarean delivery rates

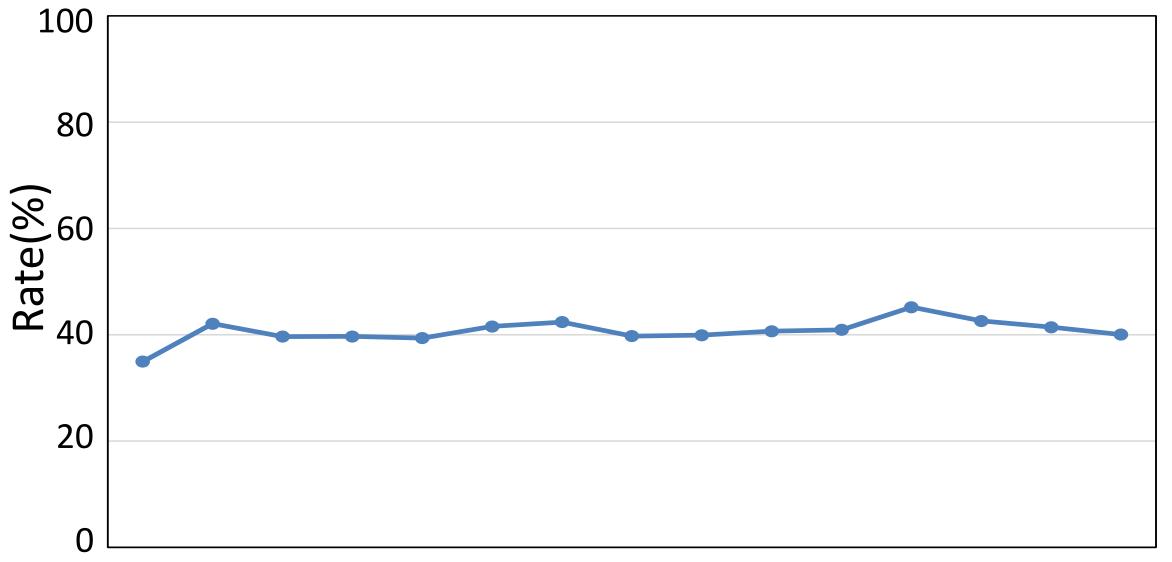

Cesarean delivery rate by GW

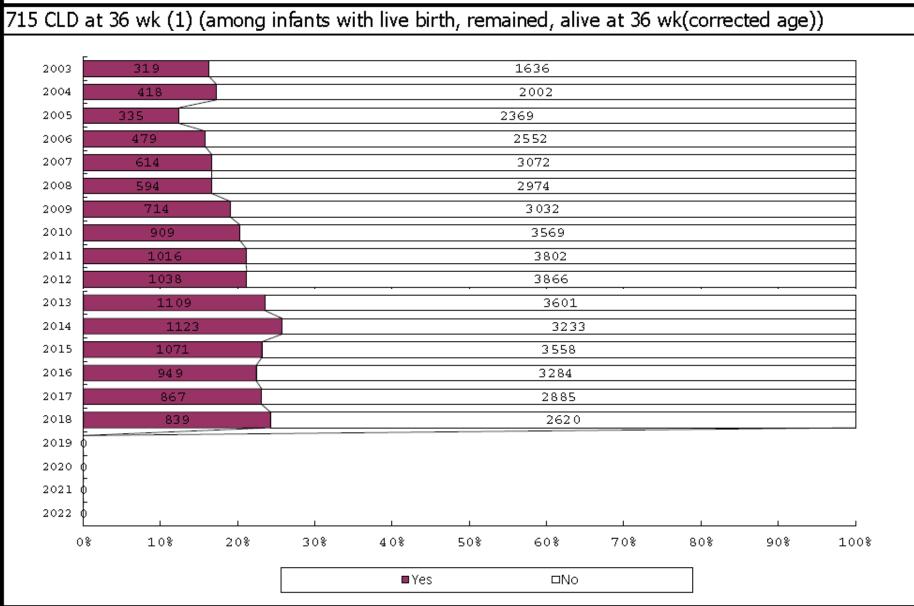

Trends in tracheal intubation rates at birth

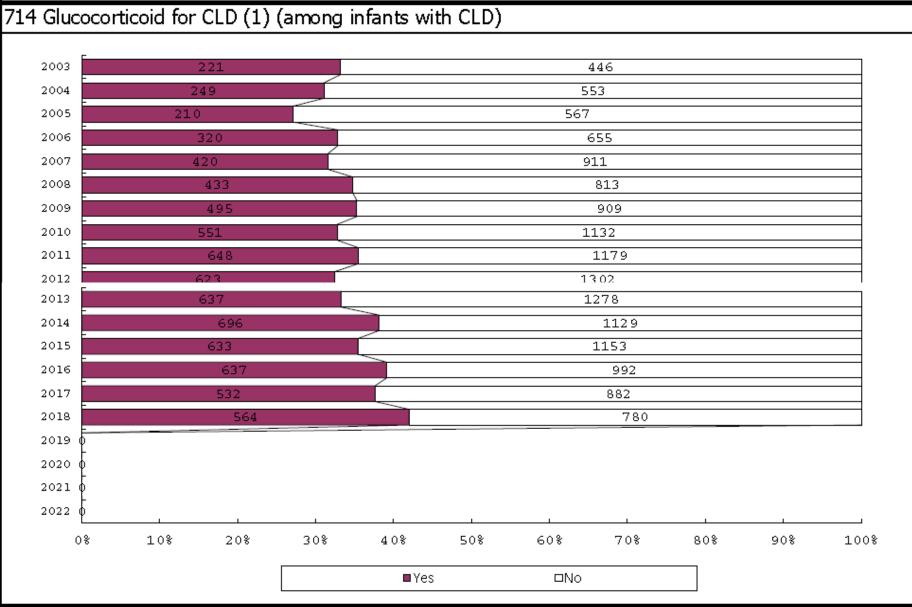

Tracheal intubation rate by GW

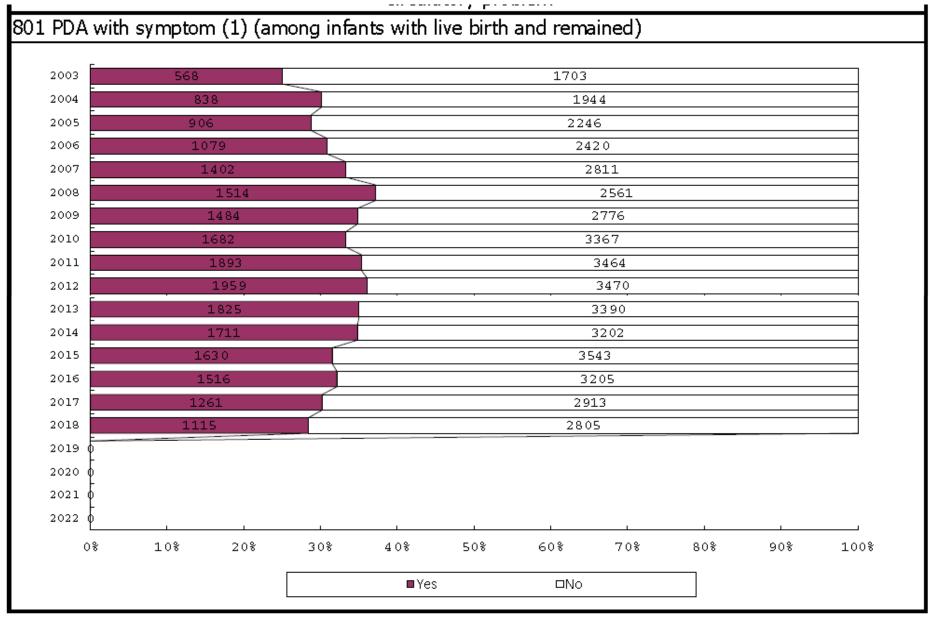

Trends in rates of RDS


Trends in length of oxygen use

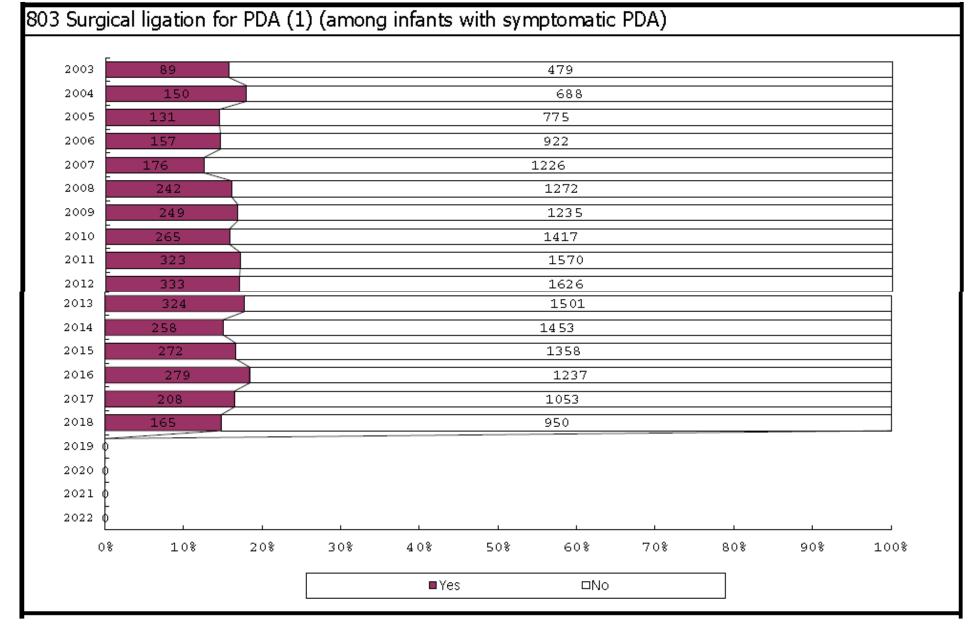

Trends in length of CPAP use

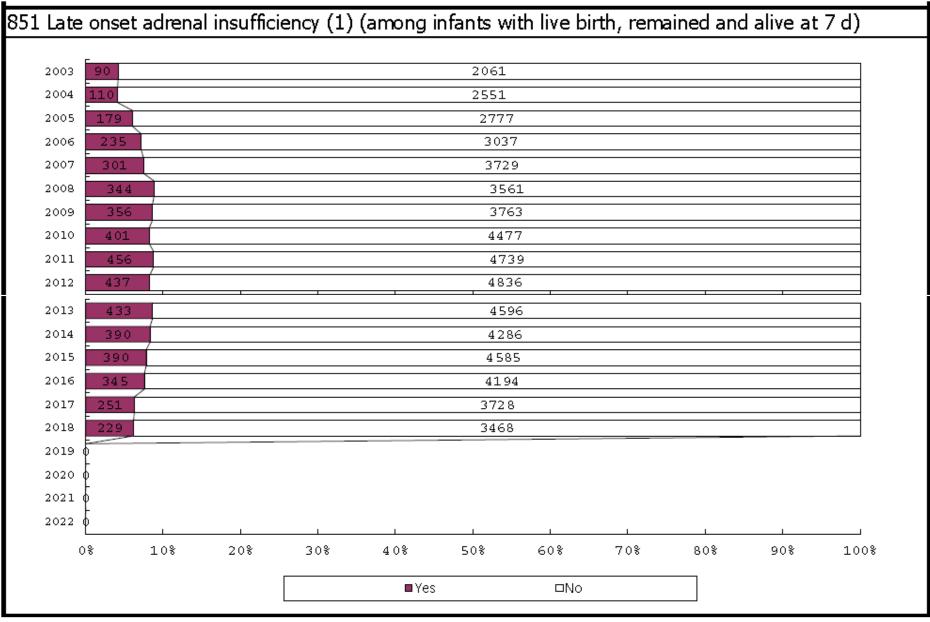

Trends in length of mechanical ventilation

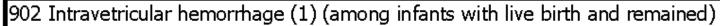

Trends in rates of HFOV use

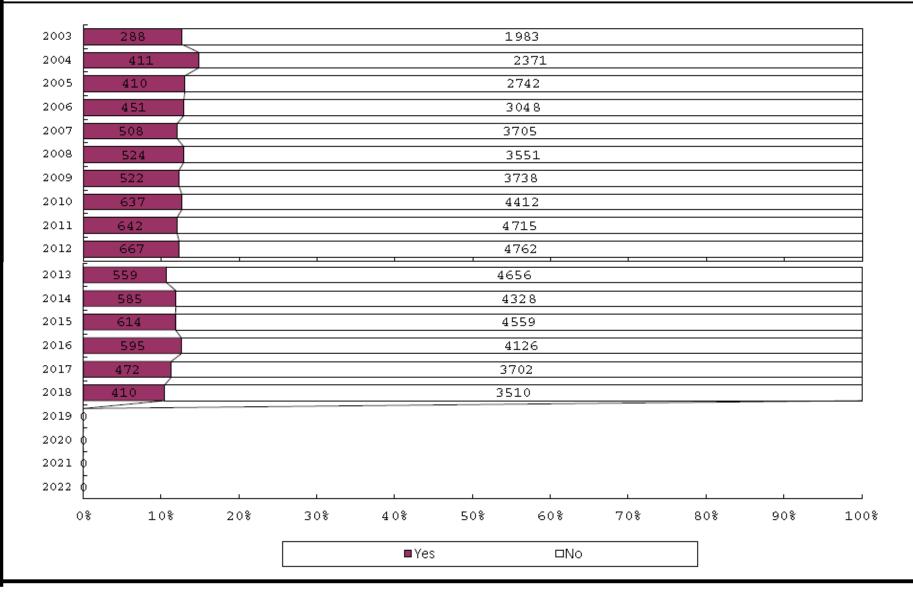

Trends in incidences of CLD at 36 GW

Trends in rates of glucocorticoid use of CLD

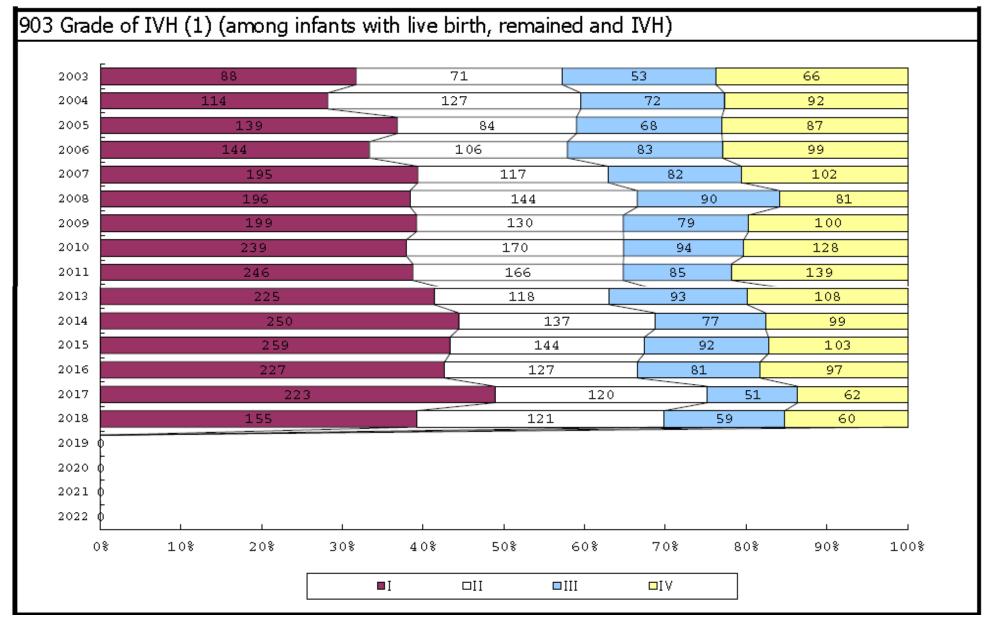

Trends in incidences of PDA


Trends in uses of indomethacin

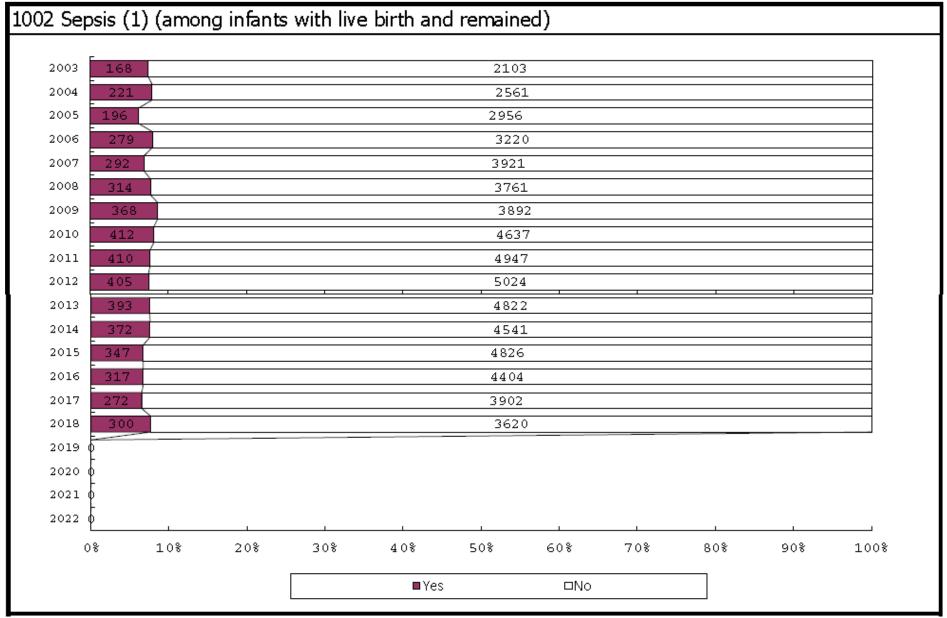

Trends in rates of PDA ligation

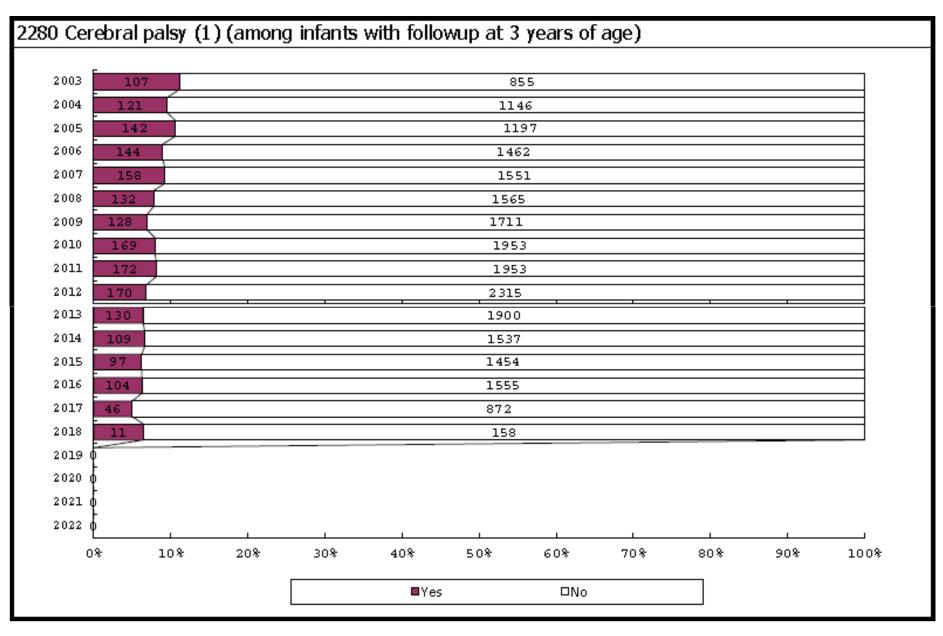


Trends in rates of late onset adrenal insufficiency

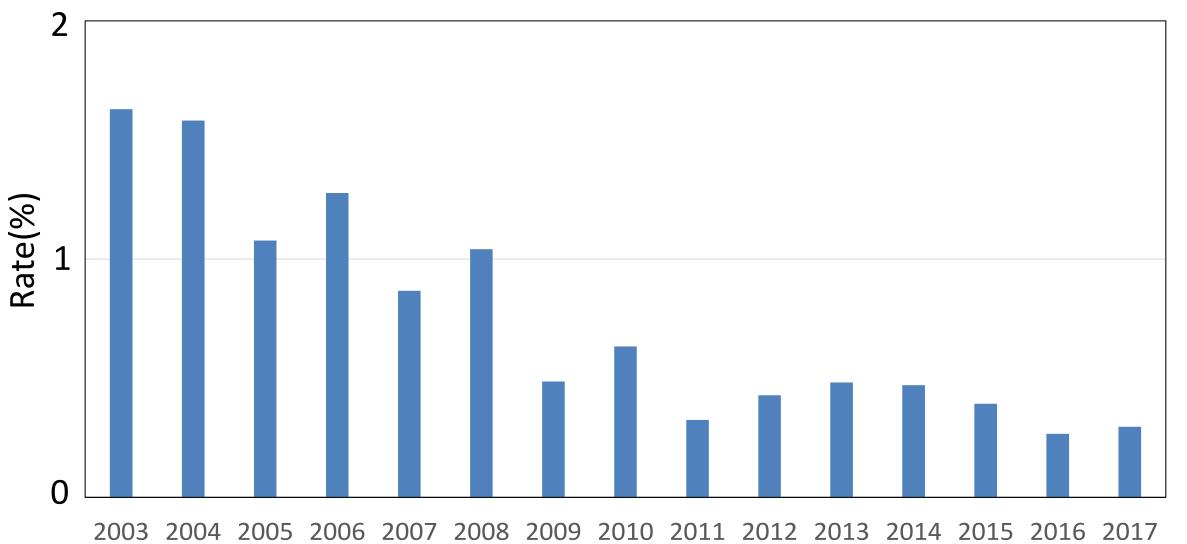


Trends in incidences of IVH


Trends in grades of IVH


Trends in incidences of PVL

PVL (1) (among ir	nfants wi	th live bi	th and re	emained)					
2003 73					2198					
2004 104					2150					
2005 115					3037					
2006 136					3363					
2007 141					4072					
2008 132					3943					
2009 125					4135					
2010 160					4889					
2011 155					5202					
2012 142	1				5287		1		1	
2013 228					5087					
2014 134					4779					
2015 156					5017					
2016 109					4612					
2017 85					4089					
2018 96					3824					
2019 0										
2020 þ										
2021 Ø										
2022 0	1			1		1	1	1		
0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
			∎Yes		3	□No				


Trends in incidences of sepsis

Trends in incidences of CP at 3 years of age

Trends in incidences of uni- or bi-lateral blindness

Neonatal Intensive Care Manual for the infants born at less than 28 weeks of gestation

- 10 contributors
- 7 chapters, 103 pages Introduction Resuscitation Respiratory support **Circulatory support** Intravenous fluid management **Enteral feeding** Infection control NICU environment

Neonatal Intensive Care Manual for the infants

born at less than 28 weeks of gestation

(Ver. 1)

Neonatal Research Network of Japan

(http://plaza.umin.ac.jp/nrndata/)

Contributors (according to writing order)

Satoshi Kusuda	Kyorin University
Tetsuya Isayama	National Center for Child Health and Devel
Shinya Hirano	Osaka Women's and Children's Hospital
Hidehiko Nakanishi	Kitasato University
Tomohiko Nakamura	Nagano Children's Hospital
Hiroko Iwami	Osaka City General Hospital
Masahiro Hayakawa	Nagoya University
Isamu Hokuto	St. Marianna Medical University
Tokuo Miyazawa	Showa University
Masanori Fujimura	Osaka Women's and Children's Hospital

(2019 All rights reserved by Neonatal Research Network of Japan)

Summary

- Neonatal Database system operated successfully since 2003
- Continuous improvement in mortality and morbidities
- However, some morbidities still remain high
- Need continuous efforts to improve outcomes among high risk infants
- NICU manual for the infants born at less than 28 weeks of gestation was published, please visit our web site (http://plaza.umin.ac.jp/nrndata/pdf/NICUManual.pdf)

Clinical Trials in Newborn Infants

The Case for URGENT International Collaboration

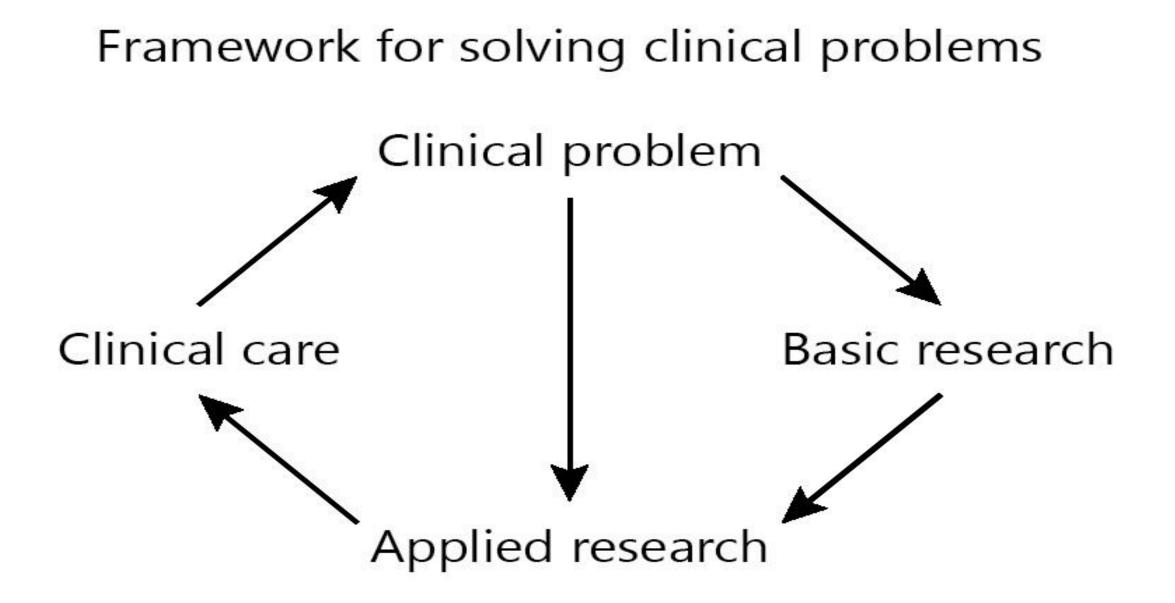
Ju Lee Oei

Neonatologist Royal Hospital for Women University of New South Wales Sydney Australia

Medicine

Problem: Drowning Man

Question: How to save him?


I don't have any evidence that a life raft will save him

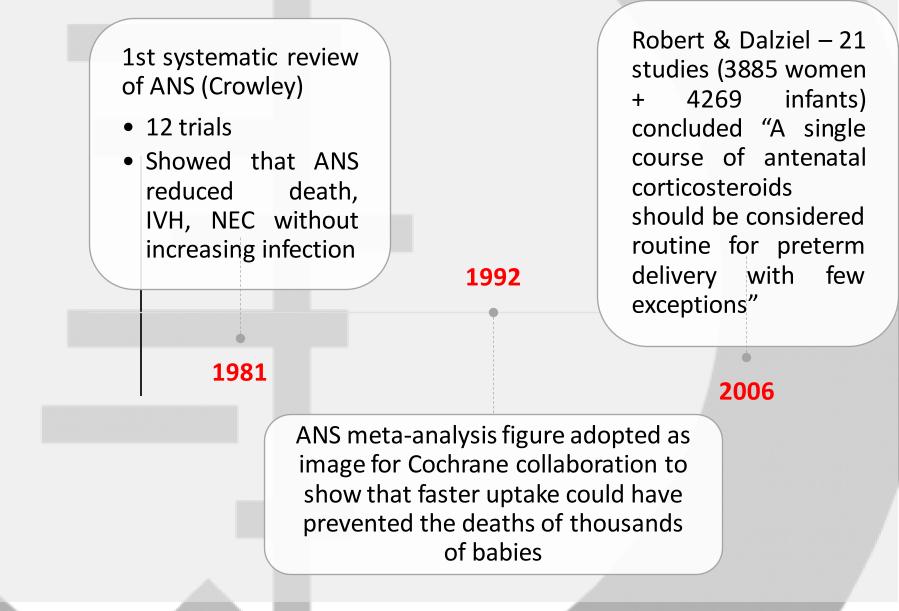
Should I throw the life raft?

This will take years and babies do not have time to waste

Trials Improve Health

- Polio vaccines = eradication of polio
- Childhood cancer survival: 28% in 1960's to 79% to 2005 to >80% today
- Inclusion effect (Lantos 1999)
 - Just being part of a study will improve outcomes

Ian Chalmers, Founder of Cochrane


Medical Emergency Card

Invite me to participate in all randomized controlled trials for which I am potentially eligible

Antenatal Steroids A demonstration of slow uptake of a lifesaving intervention

- #1 most important intervention in neonatology
- 1969 Liggins (obstetrician) + Howie (Neonatologist) in New Zealand randomized 282 women to antenatal steroids
- <u>Rejected</u> by Lancet (not interesting)
- <u>Published</u> by Pediatrics in 1972
- Findings
 - Reduced early neonatal mortality 15% to 3%
 - RDS reduce 26% to 9%
- Recruitment continued to 1974 total 1142 women + 1248 babies

How much more evidence do we need?

Antenatal Steroids Have Varied Uptake

1980s

Australia and New Zealand – <u>almost all</u> eligible women received ANS

2007-2010

Japan <u>49%</u> received ANS but mortality lowest (5%) out of 8 neonatal networks

10-20% take up in USA and UK

Another Conundrum Oxygen at Delivery

"Oxygen can only be good. Apply liberally"

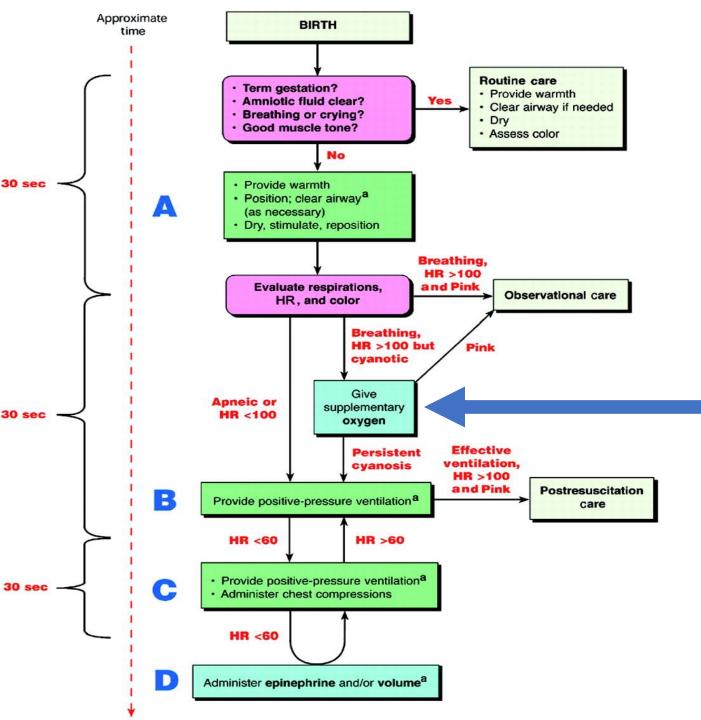
There was no RCT

Klaus 1960

The Resair Studies Showed That O₂ May Not Even be Needed for Term Infants

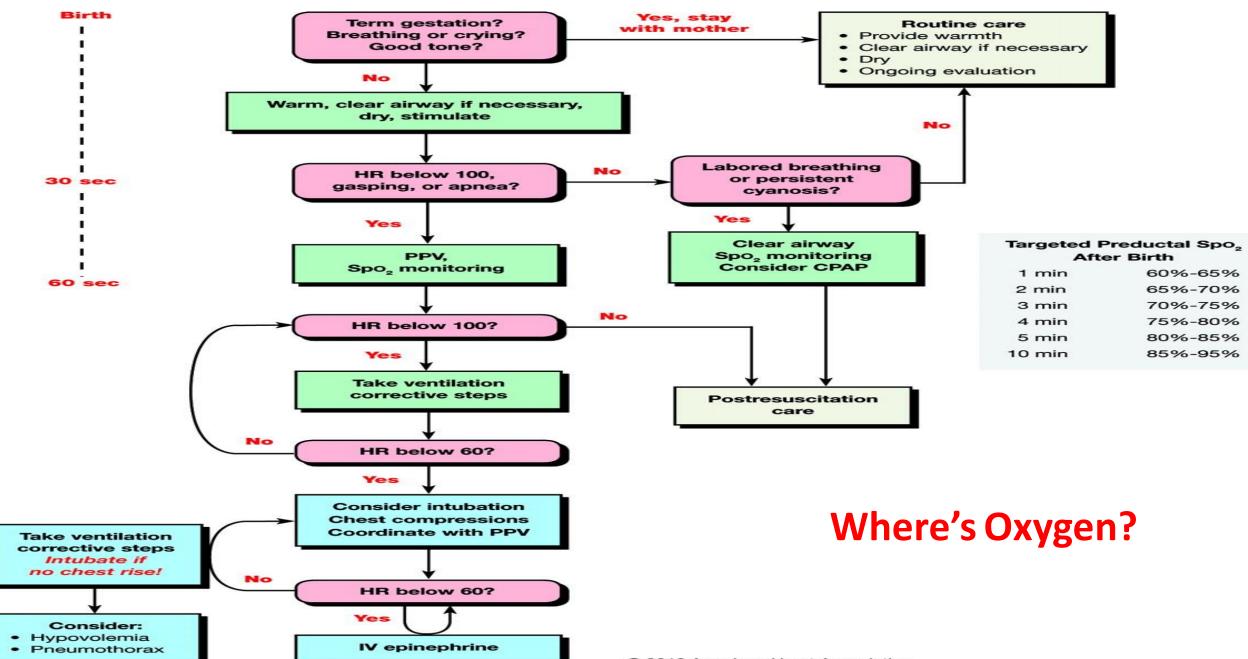
 First to randomize term/near term hypoxic infants to either air or 100% O₂ for delivery room resuscitation

Saugstad OD, et al. *PEDIATRICS* 1998;102(1):e1 Resair 2 Trial

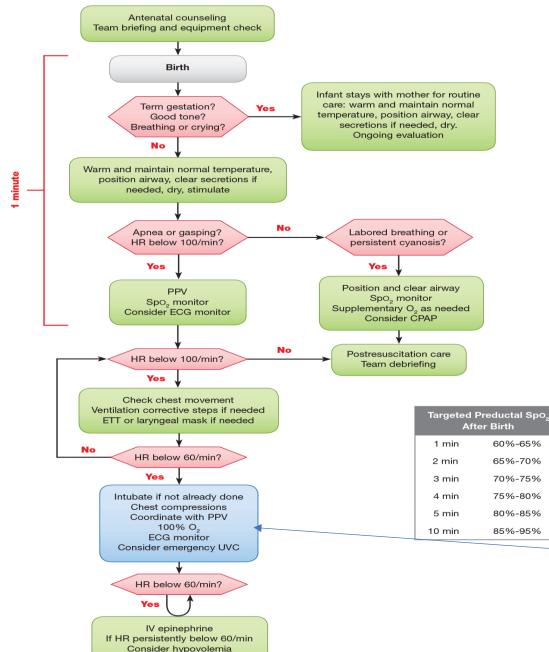


Norway
Spain
Estonia
Egypt
India
Philippines

Air Decreased Risk of Death by 30%


tudy or subgroup	Room air n/N	100% oxygen n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M - H, Fixed, 95% Cl
Ramji 1993	3/42	4/42		3.9 %	0.75[0.18, 3.15]
Ramji 2003	26/210	40/221		38.0 %	0.68[0.43,1.08]
Saugstad 1998 c	40/288	61/321		56.2 %	0.73[0.51,1.05]
Vento 2003	1/76	2/75	• • •		0.49[0.05, 5.33]
'otal (95% Cl) otal events: 70 (Room a eterogeneity: Chi ² = 0.1 est for overall effect: Z =	.5, df = 3 (P = 0.99); P		•	100.0 %	0.71 [0.54, 0.94]

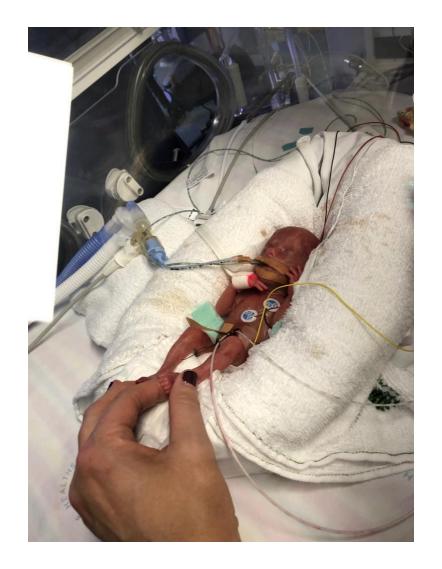
Tan et al 2004



AAP Resuscitation Guidelines 2005

- Standard approach to use 100% oxygen if PPV required
- <u>Room air could be used</u> <u>but oxygen must be</u> <u>available if no</u> improvement by 90s
- Oxygen should be used with caution in premature infants due to risk of oxidant injury

Neonatal Resuscitation Algorithm-2015 Update


Consider pneumothorax

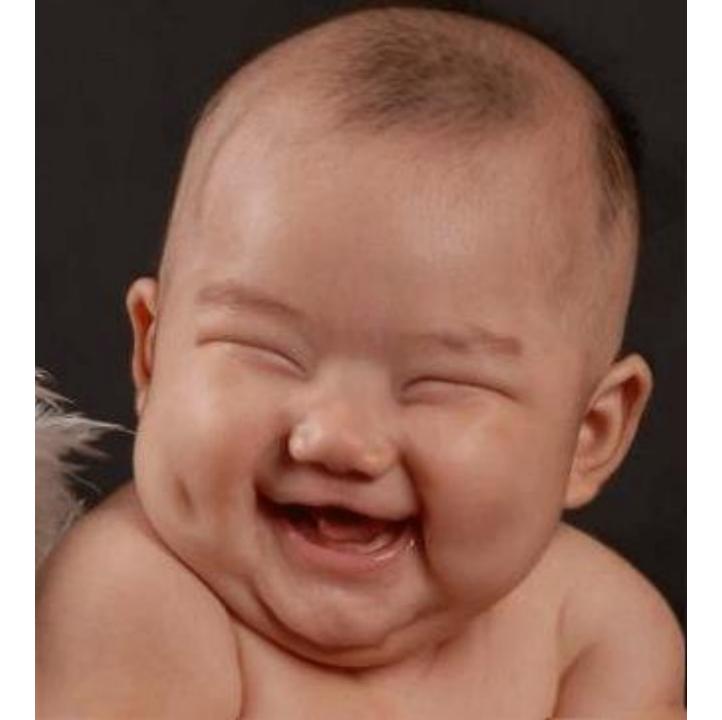
2015 Update to the Resuscitation Guidelines

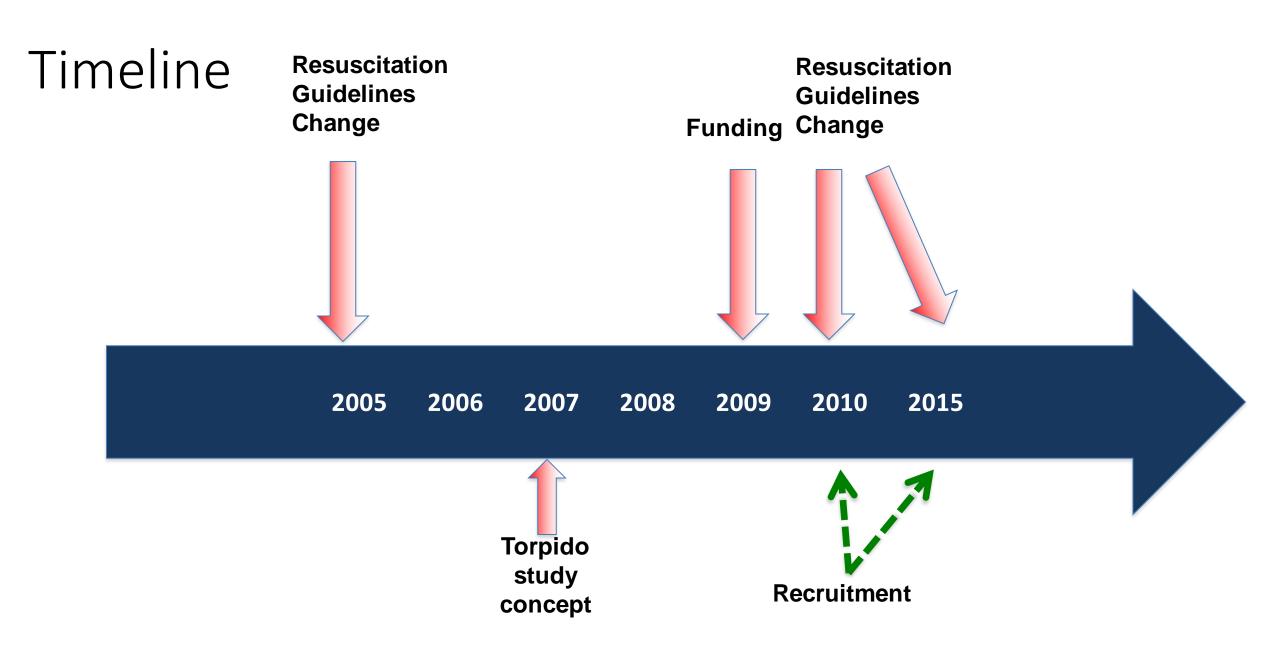
Oxygen's back!

© 2015 American Heart Association

What About the Little **Babies?**

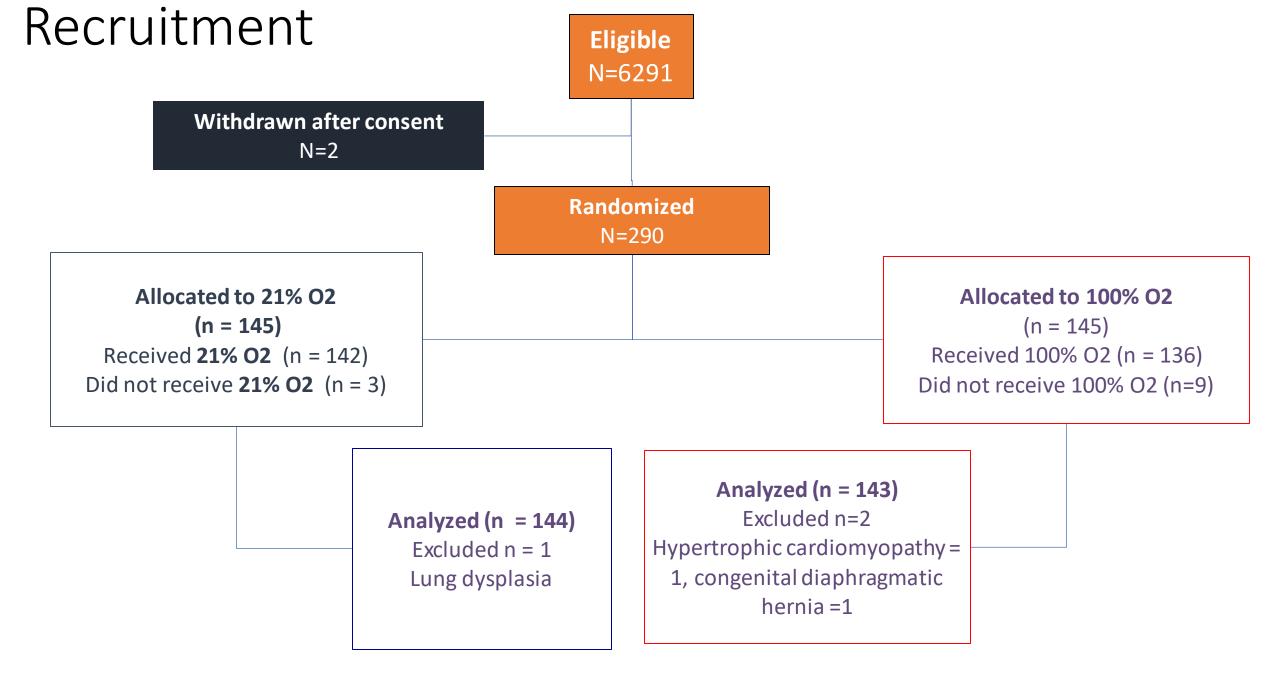
The To₂rpido Study

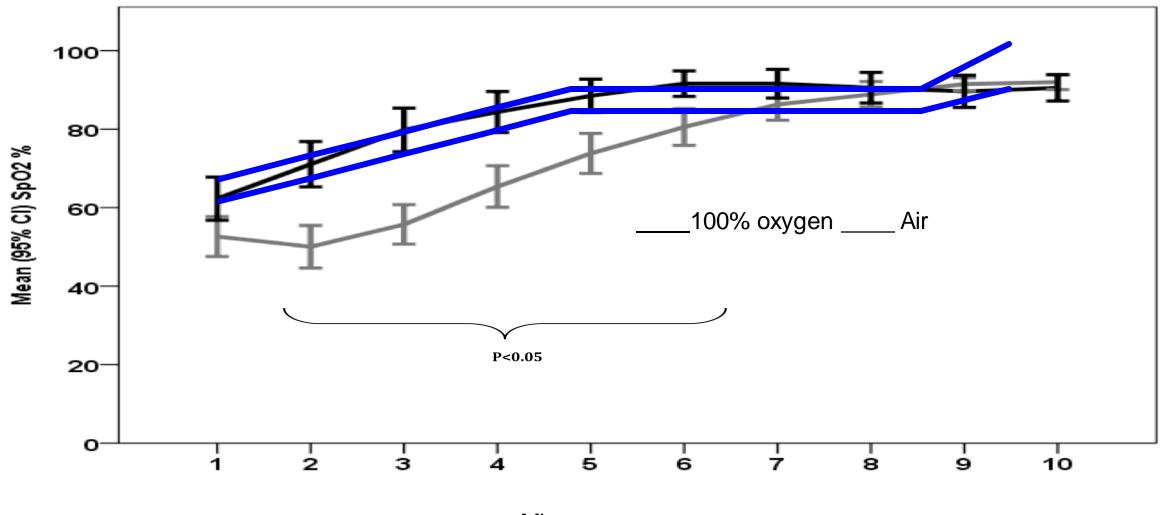

Targeted Oxygen in the Resuscitation of Preterm Infants, a Randomized Clinical Trial


Ju Lee Oei, MBBS, FRACP, MD,^{a,b,c} Ola D. Saugstad, MD, PhD,^d Kei Lui, MBBS, FRACP, MD,^{a,b} Ian M. Wright, MBBS, MRCP, Paeds, FRACP,^{e,f,g} John P. Smyth, MBBS, FRACP,^{a,b} Paul Craven, MBBS, FRACP,^g Yueping Alex Wang, BMed, MPH, PhD,^h Rowena McMullan, MBBS, FRACP,ⁱ Elisabeth Coates, BSc,^c Meredith Ward, MBBS, FRACP,^{a,b} Parag Mishra, MBBS, FRACP,^{a,b} Koert De Waal, MBBS, FRACP, PhD,^g Javeed Travadi, MBBS, FRACP,^g Kwee Ching See, MBBS, MRCP,ⁱ Irene G.S. Cheah, MBBS, MRCP,^k Chin Theam Lim, MBBS, MRCP,¹ Yao Mun Choo, MBBS, MRCPH,¹ Azanna Ahmad Kamar, MBBS, MRCP,ⁱ Fook Choe Cheah, MD, FRACP, PhD,^m Ahmed Masoud, MD,ⁿ William Tarnow-Mordi, MBBS, MRCP^c To determine if initial FiO₂ 0.21 can reduce death and/or major disability at 2 years compared to FiO₂ 1.0 in infants <32 weeks gestation

988 infants in each arm were required

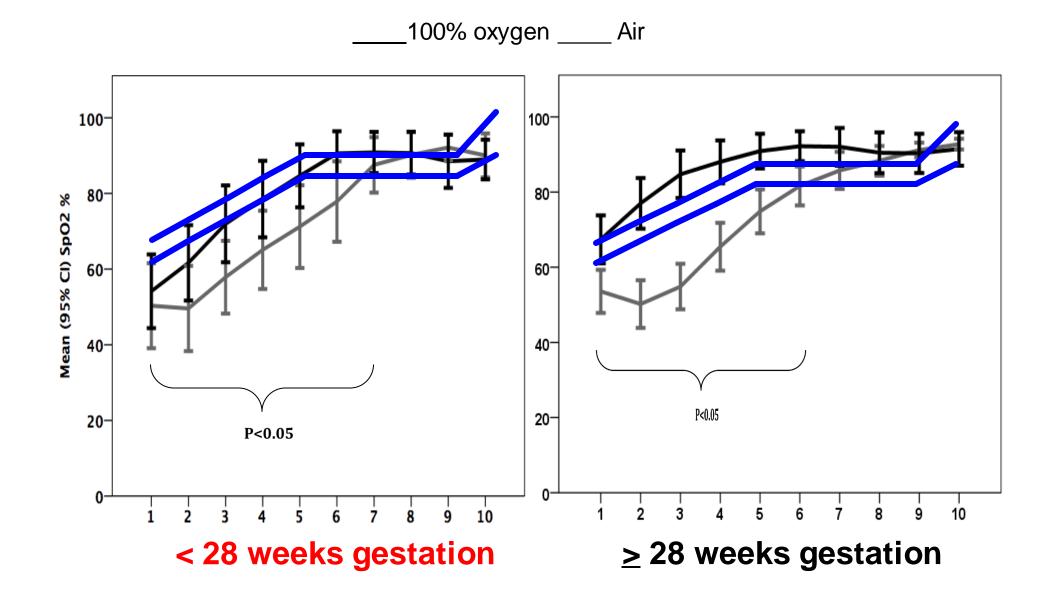
To show a 20% reduction in the relative risk of death and major disability at 2 years




DSMC Recommendations

Data and Safety Management Committee recommended in 2014 that recruitment be ceased at 292 patients due to slow recruitment as centers were reluctant to use 100% O₂ after publication of the 2010 ILCOR guidelines

As the Primary Outcome was not yet available, short-term outcomes should be reported.



Oxygen Saturations – 1st 10 Minutes – All Babies

Minutes

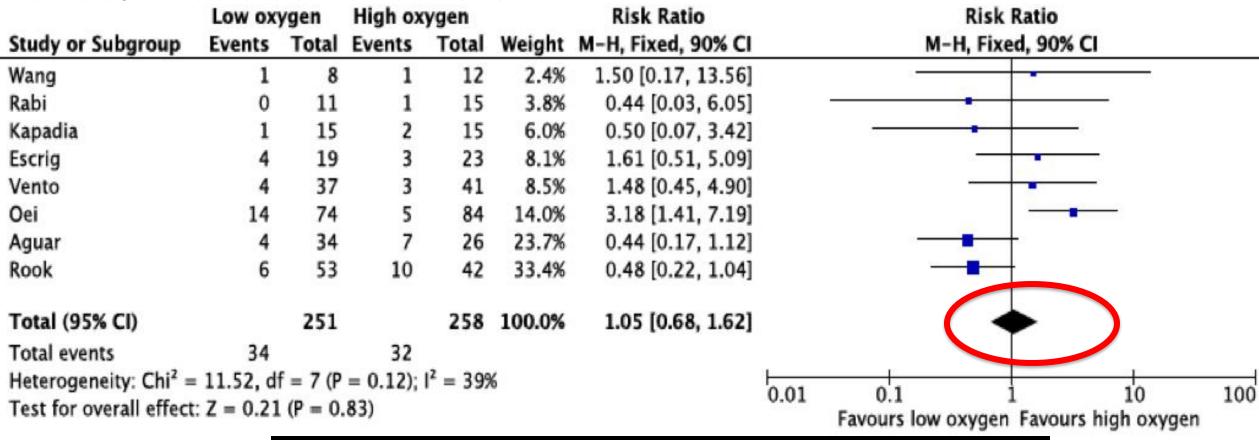
Oxygen Saturations - First 10 Minutes

POST HOC- Hypothesis Generating Only Hospital Mortality

- There was an **unexpected increase** in hospital mortality in infants <28 weeks gestation initially resuscitated with air.
- These are not pre-specified and are marginally statistically significant
- No infant >29 weeks died

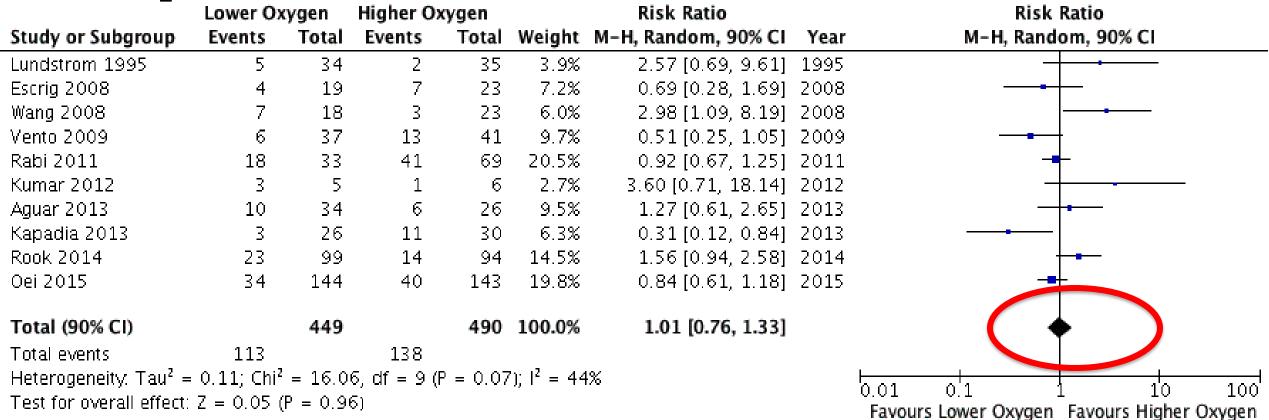
	21% O2	100% O2	Relative Risk (RR) [95% CI]	Р
<28 weeks	10/46 (22%)	3/54(6%)	3.9 (1.1-13.3)	0.03
>28 weeks	4/98 (4%)	2/89 (2%)	1.8 (0.3-9.6)	0.68

Is lower oxygen really better for preterm babies?


•11 Studies •FiO₂ \leq 0.3 v FiO₂ \geq 0.6 •NO STUDY OF FiO₂ between 0.3 to 0.4

DEATH is not different in 970 infants <33 weeks gestation resuscitated with FiO₂<30% vs >60%

	Lower Ox	ygen	Higher Oxygen			Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 90% CI	Year	M-H, Random, 90% CI
Lundstrom 1995	2	34	6	35	9.0%	0.34 [0.10, 1.24]	1995	
Wang 2008	1	18	1	23	3.2%	1.28 [0.13, 12.34]	2008	
Escrig 2008	4	19	3	23	10.9%	1.61 [0.51, 5.09]	2008	
Vento 2009	4	37	3	41	10.2%	1.48 [0.45, 4.90]	2009	•
Rabi 2011	1	34	3	72	4.6%	0.71 [0.11, 4.57]	2011	
Kumar 2012	0	5	1	б	2.6%	0.39 [0.03, 4.86]	2012	
Aguar 2013	4	34	7	26	15.2%	0.44 [0.17, 1.12]	2013	
Kapadia 2013	2	26	3	30	7.4%	0.77 [0.18, 3.23]	2013	
Armanian 2013	0	14	0	13		Not estimable	2013	
Rook 2014	б	99	10	94	18.8%	0.57 [0.25, 1.29]	2014	
0ei 2015	14	144	5	143	18.1%	2.78 [1.21, 6.41]	2015	
Total (95% CI)		464		506	100.0%	0.90 [0.55, 1.48]		
Total events	38		42					
Heterogeneity: Tau ² =	0.09; Chi ²	= 10.5	4, df = 9 (F	P = 0.31	L); $l^2 = 15$	5%		0.01 0.1 1 10 100
Test for overall effect:	Z = 0.41 (Р = 0.6	8)					0.01 0.1 1 10 100 Favours lower oxygen Favours higher oxygen

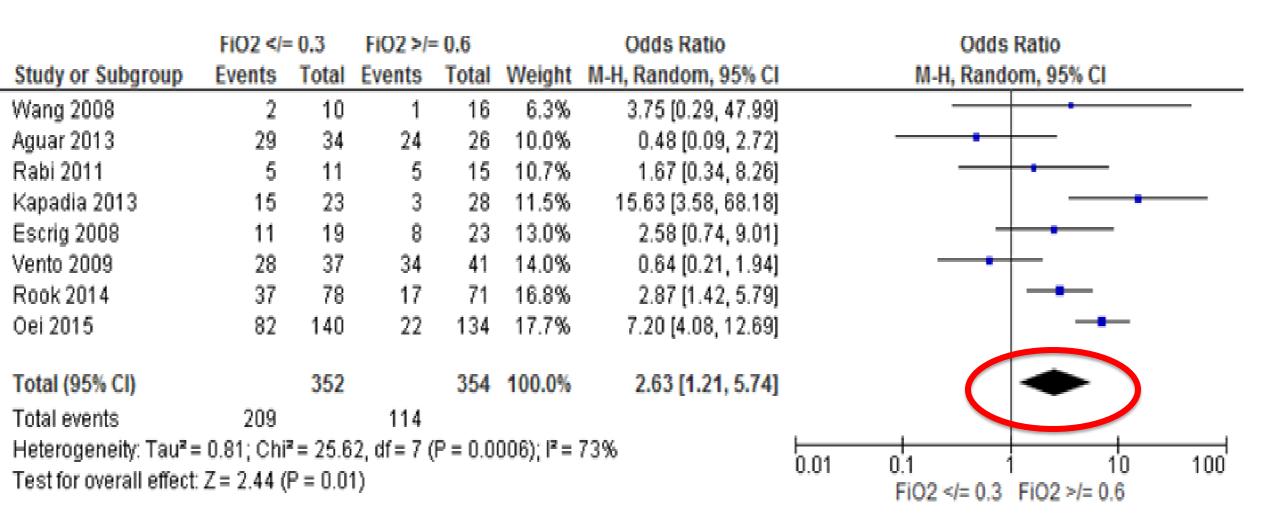

RR 0.90 (90% CI 0.55-1.45, p = NS)

Death in 509 infants <29 weeks gestation resuscitated with FiO₂<30% vs >60% was also not different

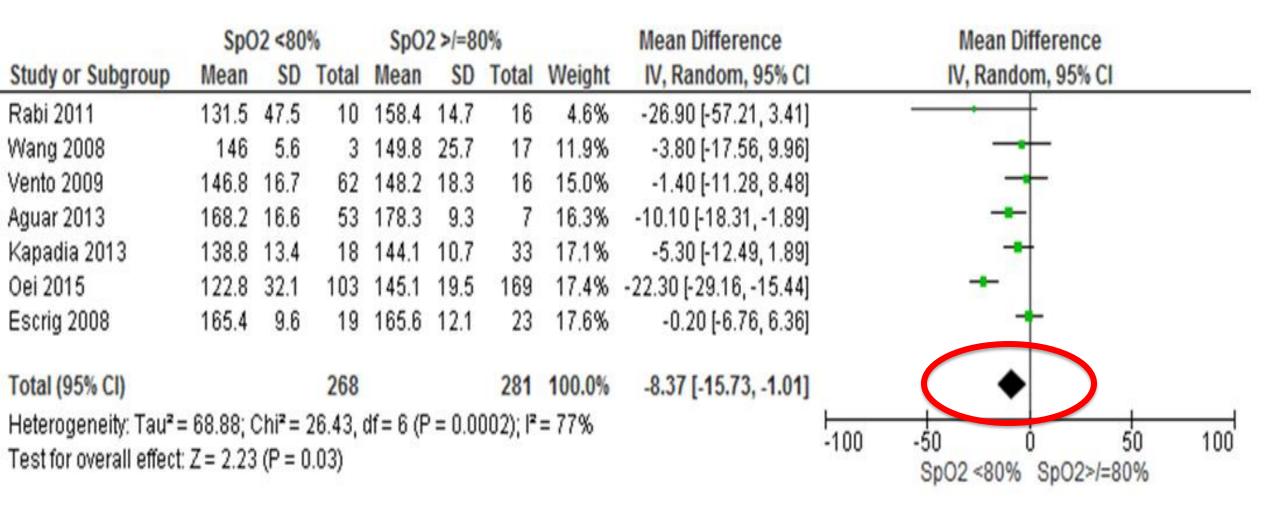
RR 1.05 (90% CI 0.68, 1.62, p = NS)

BPD is not different in 939 infants <33 weeks gestation resuscitated with FiO₂<30% vs >60%

RR 1.01 (90% CI 0.76,1.33, p = NS)

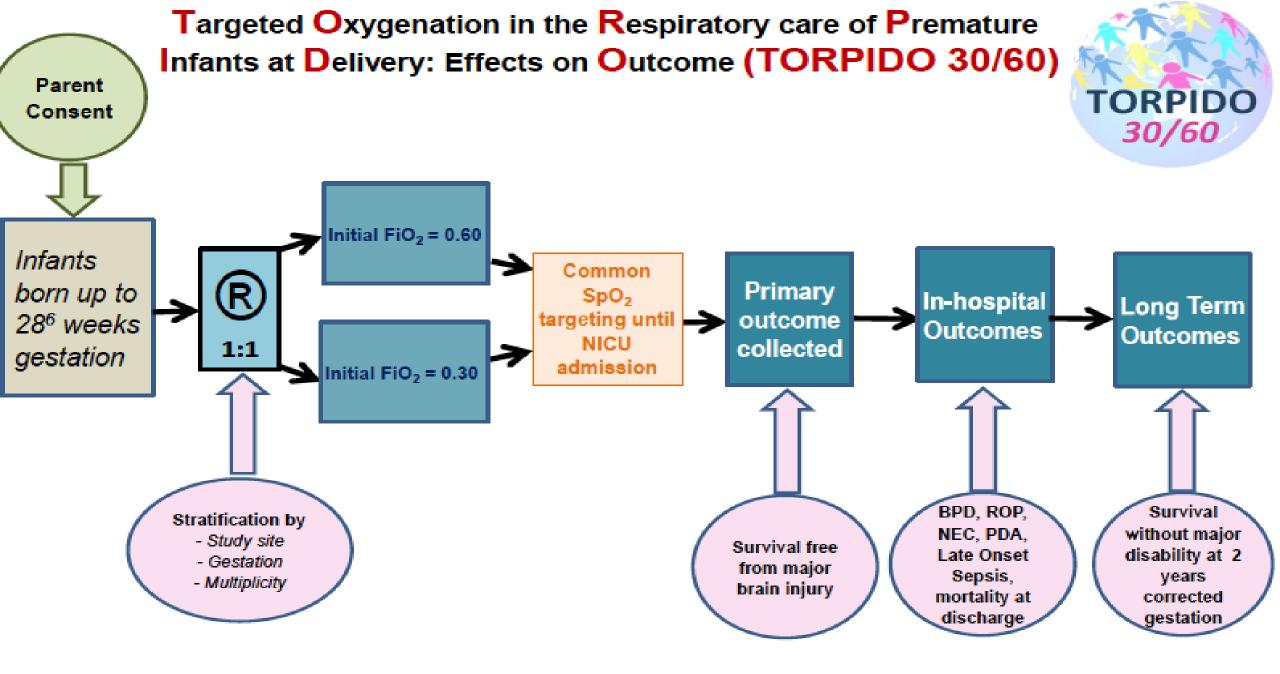

It that it? What about SpO₂?

SpO₂ Targets Neonatal Resuscitation Program = Also no RCT

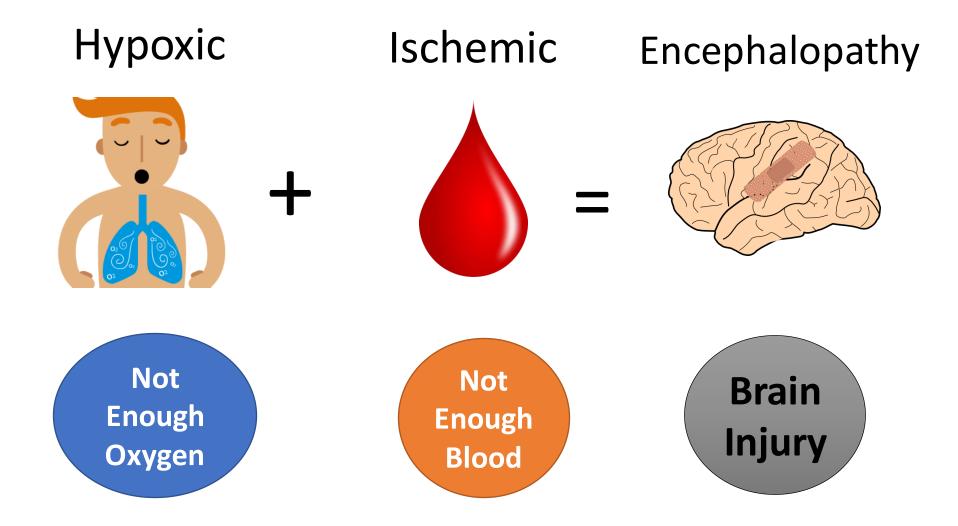

Time	SpO ₂
1 minute	60-65%
2 minutes	65-70%
3 minutes	70-75%
4 minutes	75-80%
5 minutes	80-85%
10 minutes	85-95%

Only 23% of babies reached study targets

(But they were 2.6 times more likely to reach SpO₂ 80% if started on higher oxygen)



Babies with SpO₂ <80% at 5 min had lower (8 bpm) heart rates


Babies with SpO ₂ <80% at 5 min were more likely to die									
	SpO2<80%		SpO2>/=80%		Odds Ratio		Odds Ratio		
Study or Subgroup	Events Total		Events	Total	Weight M-H, Random, 95%		M-H, Random, 95% CI		
Wang 2008	0	3	0	23		Not estimable	e		
Rabi 2011	1	10	0	16	3.4%	5.21 [0.19, 141.08]	3] • • • • •		
Aguar 2013	7	53	0	7	4.2%	2.42 [0.12, 46.91]]		
Vento 2009	7	62	0	16	4.3%	4.46 [0.24, 82.27]	·] · · · · · · · · · · · · · · · · · ·		
Kapadia 2013	2	18	3	33	10.3%	1.25 [0.19, 8.27]	·]		
Escrig 2008	5	19	2	23	11.6%	3.75 [0.64, 22.10])]		
Rook 2014	6	54	6	95	26.1%	1.85 [0.57, 6.06]	§]		
Oei 2015	13	104	7	170	40.2%	3.33 [1.28, 8.64]	I] ————————————————————————————————————		
Total (95% CI)		323		383	100.0%	2.66 [1.45, 4.87]			
Total events	41		18						
Heterogeneity: Tau ² =	0.00; Chi	² = 1.61	, df = 6 (P	e 0.95)	; I² = 0%				
Test for overall effect:	-			0.01 0.1 1 10 100 SpO2<80% SpO2>/=80%					

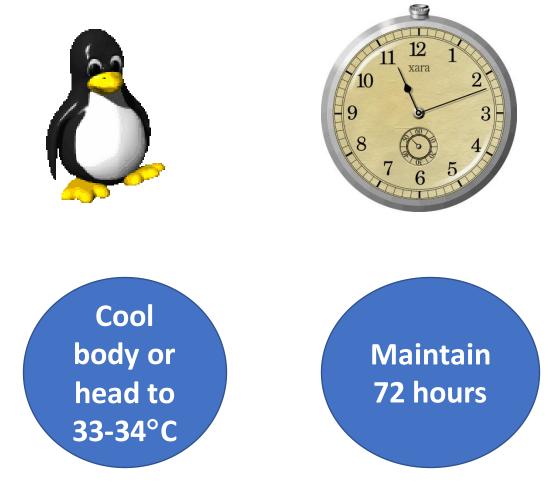
Many Questions Remain Is it starting FiO₂? What about SpO₂? We need to do an RCT!

For further details contact Rebecca Brown: Torpido3060@ctc.usyd.edu.au

Hypoxic Ischemic Encephalopathy (HIE)

Severe HIE Accounts for ¼ of All Global Neonatal Deaths (>900,000 p.a.)

~50% with severe HIE will die



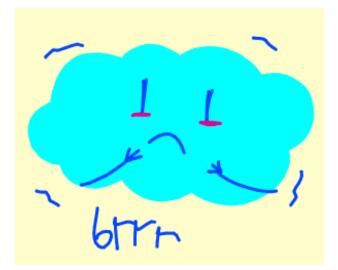
~ 20% will have major disability

>70% of survivors without major disability will have cognitive and other problems e.g. Autism and behavioral issues that significantly impair daily function

Therapeutic Hypothermia (TH)

Metabolic rate slows

Brain cells recover


Therapeutic Hypothermia

$\mathbf{\Psi}$

T

- Cerebral energy metabolism
- Free radical production
- Glutamate release (glutamate causes seizures)
- N-acetyl aspartate (controls brain fluid, source of lipid for myelin synthesis, low levels associated with brain injury)
- Protein synthesis
- Preserves
 - Antioxidants
 - Cerebral ATP

Each 2-4° systemic or selective brain temperature = improved survival after adult stroke, trauma, cardiac arrest

TH Decreases Death after SEVERE HIE

	Hypothermia		Normoth	nermia			
Study or subgroup	Events	Total	Events	Total	Risk ratio (95% CI)	Weight (%)	Risk ratio (95% CI)
Akisu	0	11	2	10		1.2	0.18 (0.01 to 3.41)
CoolCap	36	116	42	118	+	19.3	0.87 (0.61 to 1.25)
Eicher	10	32	14	33	-	6.4	0.74 (0.38 to 1.41)
ICE	25	110	39	111	-	18.0	0.65 (0.42 to 0.99)
Lin	2	32	2	30		1.0	0.94 (0.14 to 6.24)
neo.nEURO	21	64	32	65	-	14.7	0.67 (0.43 to 1.02)
NICHD	24	102	38	106	-	17.2	0.66 (0.43 to 1.01)
Robertson	7	21	1	15		0.5	5.00 (0.69 to 36.50)
Shankaran	2	9	3	10		1.3	0.74 (0.16 to 3.48)
ТОВҮ	42	163	44	162	+	20.4	0.95 (0.66 to 1.36)
Total (95% CI)		660		660	•	100.00	0.78 (0.66 to 0.93)
Total events	169		217	0.0	01 0.1 1 10 10	00	
				Favo hype	ours Favo othermia normother	1220	

TH is Hard Work

Therapeutic Hypothermia has Side Effects

- Meta-analyses of 1322 infants, 11 studies
- <u>Cardiac arrhythmia</u> (RR 2.42, 95% CI: 1.23-4.76), especially Sinus Bradycardia, Ventricular arrhythmias, hypotension
- <u>Thrombocytopenia</u> (RR 1.18, 95% CI: 1.02-1.37) and coagulopathy
- <u>Metabolic dysfunction</u>: acidosis, hypokalemia, hypoglycaemia
- <u>Seizures</u>

Therapeutic Hypothermia must start within 6 hours

MALE INFANT

- 39 Weeks
- Spontaneous labour
- Poor fetal trace
- Cesarean Delivery
- IPPV at birth
- APGAR 3 (1), 5 (5), 8 (10)
- Cord Ph 6.9 Lactate 17
- Admitted to nursery for observation
- Very alert
- Not cooled
- Sent to the Postnatal Ward by 7 hours

Seizures 12 hours

MRI Occipital Changes day 5

The Mild Child

Is "Mild" Really "Mild"?

Studies	n	Mild	Cooled	Abnormal
All	20	314	46	25%
Cohort	16	250	0	22%
Trials	2	91	46	29% v 37% (NS)

Conway 2018

Prospective Research in Infants with Mild Encephalopathy (PRIME) study

- Only cohort study with follow-up
- 54 infants
- > 1 abnormality on modified Sarnat score
- Aeeg = Normal in 50
- 1 = mod HIE (initial normal aEEG)
- 43/53 (68%) followed up = 16% disabled
- 56% at least one BSID <1 SD below mean
- Disability associated with abnormal MRI and discharge examination

Lina Chalak Texas

Neurodevelopment in "Mild" HIE

- Abnormal neurodevelopment seen in 10-30% with mild HIE
- 50% mild HIE at school age have MRI abnormalities at 9-10 y
 - Thalamic NAA/Cr ratio (marker of neuronal death)
 - NAA/Cho ratio (Loss of cell membrane integrity)
 - White matter injury
- Lower IQ
- Increased thought/behavior problems

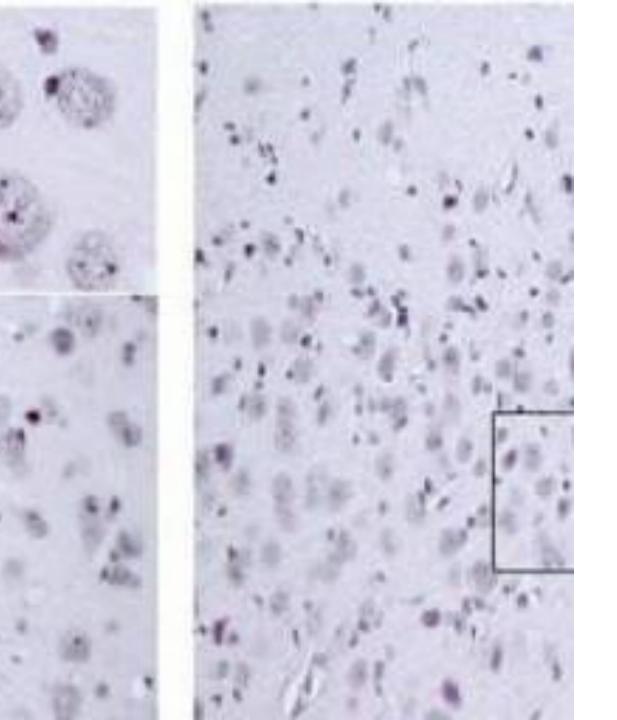
We only have TH so is TH Beneficial in "Mild" HIE?

Shivering Uncomfortable Risk of complications

Cooling for Mild HIE No current evidence for benefit from studies of severe HIE

Therapeutic Hypothermia		Control			Odds Ratio Odds Ratio			io		
Study	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl		M-H, Fixed, 9	5% CI	
Battin,M 2001	1	5	2	4	14.5%	0.25 (0.01, 4.73)		•		
Jacobs,S 2011	4	16	8	24	39.1%	0.67 (0.16, 2.74)			-	
Wyatt,J 2007	2	5	0	3	2.8%	5.00 (0.17, 146.64)				
Zhou,W 2010	6	19	7	15	43.6%	0.53 (0.13, 2.14)		-		
Total (95% CI)		45		46	100%	0.67 (0.28, 1.61)		-		
Total Events	13		17							
Heterogeneity Ch	Heterogeneity Chi ² =1.90, df = 3 (P = 0.59), l ² = 0%							0.1 1	10	100
Test for overall e	Test for overall effect Z = $0.90 (p = 0.37)$								10 ours [No TH]/	100

But Therapeutic Creep Is Here


UK SURVEY (Oliveira 2018)

- 48/74 NICUs surveyed
- <u>36 (75%)</u> offered cooling to "mild" HIE and out of criteria babies (>12 hours)
- 13 (36%) discontinued TH <72 hours
- 29 (80%): MRI
- 27 (75%): neurodevelopmental follow-up

TH can be harmful

Cooling piglets without hypoxic injury:

- Neuronal injury
- Neuronal loss in anterior putamen + motor cortex

We Need an RCT

- 1. Definition
- 2. Broaden acidosis criteria: ph 7.1 and BD 10
- 3. aEEG
- 4. Biochemical markers e.g. serial lactates
- 5. Duration of cooling?
- 6. Sample size: Must be large enough to show relevant outcomes including neurodevelopmental injury

COMET: Cooling in Mild Encephalopathy Trial

- UK
- Aims to assess DURATION of TH in mild HIE
- A: 60 infants to normal care+ 60 to TH
- B: 80 infants without progression at 24-48 h to STOPPING TH or continuing
- Primary outcome: MRS at 1-2 weeks

TIME

- Therapeutic Hypothermia for Infants with Mild Encephalopathy
- 68 infants to TH or normal care
- Infants who progress to mod HIE will be crossed over to TH
- Primary outcome: neurodevelopment at 1 year

COMFI Cooling for Mild HIE and the Future Neurodevelopment of Infants

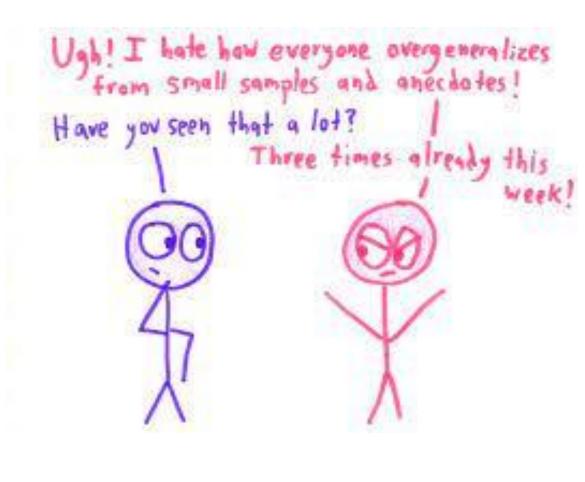
- Multisite international study (unfunded currently)
- 52 hospitals from 10 Countries
- RCT of cooling v no cooling 72 h and up to 12 h of age
- 520 infants
- PRIMARY OUTCOME: 2 year neurodevelopment

But clinical trials in newborn babies are SO difficult

- Babies are totally dependent need to wait for parents to consent
- Ethically fraught
- Time pressured many studies, including resuscitation trials need to be done NOW
- High risk death and disability
- Small numbers trials economically unattractive

Children are not little adults

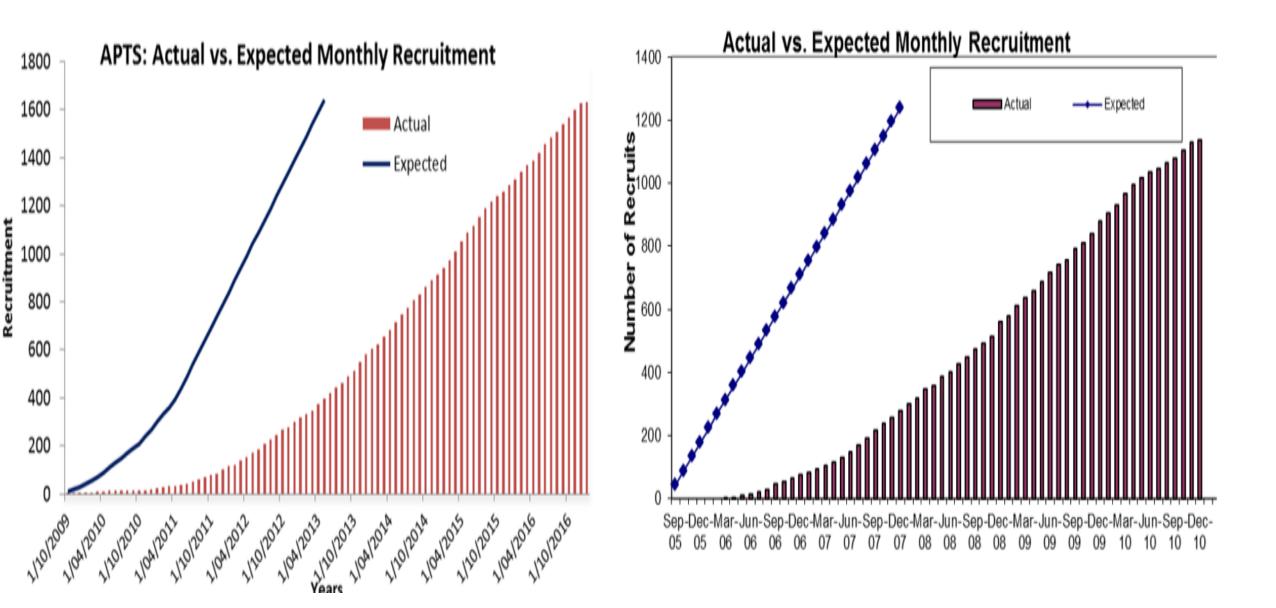
- Different physiological, developmental, psychological and pharmacological characteristics
- Metabolism is different
 - Tetracyline = enamel dysplasia
 - Chloramphenical = Gray baby syndrome
 - Propylene glycol = metabolic acidosis
- They cannot give consent



There are not enough studies about infants

- 27% world's population are children, pediatric trials = 16.7%
- Clinicaltrials.gov: 388,717 studies in 219 countries
- 6,073 (1.5%) studies with "newborn" +/-"neonate"
- 89% children live in LMIC = 25% pediatric trials in LMIC
- Children were classed as "therapeutic or pharmaceutical orphans" in the 1960's
- **65%** of drugs used in newborn infants are off label or unlicensed

Trial design in babies need special considerations


- Phase I studies (testing safety and pharmacokinetics) discouraged due to unknown effects
- May be acceptable only if condition is LIFE THREATENING or STANDARD THERAPIES have failed
- Testing in children often <u>deferred to Phase 3</u> (evaluation of efficacy, acceptability, adverse effects aka RCT) to protect children from harm
- This also delays access to potentially useful medications
- Phase IV (post marketing trials) extremely rare
- Trial registration is poorly reported, many not published

Sample sizes are SMALL

- 38% of 746 pediatric trials from 1996 to 2002
 = sample size >100
- Lower burden of disease
- Inconclusive results
- Fail to demonstrate important outcomes including adverse effects
- Australian Placental Transfusion Study (APTS) took 30 years and 17 RCTs since 1988 to show that DCC reduced death by 32% (P<0.006) in 2,834 preterm infants
- THOUSANDS of babies may be alive if this had gone faster

Figure 1: Actual vs Expected Recruitment in the NHMRC APTS and BOOST II trials

Parental MOTIVATION The crucial step to a successful trial

• Parents motivation to take part:

- 1. Altruistic doing good
- 2. Hope that own baby may benefit
- 3. Bring hope to a hopeless situation
- Parents motivation for NOT taking part:
- 1. Inconvenience
- 2. Burden for the child
- 3. Risks
- 4. Not enough time to decide
- 5. Infant's severity would not influence trial participation
- 6. Want input from others (e.g. spouse, wide family)

Parental EMOTIONS

- Stressful time
- Fear
- Confusion
- Vulnerability
- Pride in taking part
- Guilt for subjecting infant to a study
- Guilt for not subjecting infant to study
- Perception of burden varies
- Pressure to participate

The CLINICIAN Views of Parents

- Respect parental authority and rights
- Parents have to live with the long-term outcomes of their decisions
- Some felt that clinicians were best decision makers
- Some would prioritise infant interest over parental autonomy
- Some tried to spare parents the burden of making decision

Clinician views of TRIALS

- Consent process difficult
 - Time
 - Parental pressure
- Takes away time from urgent clinical duties
- Balancing responsibility to research v responsibility to parents and infant difficult
- Some thought trials raised false hopes
- Some think that someone else can do it

The CONSENT PROCESS is Different in Neonatal Trials: the Barriers

Antenatal

- More time to think
- It will never happen to me
- In labour
 - Usually not acceptable
- Waived consent
 - Most not comfortable with this unless no other option
- Opt out
 - Half/half more recruited via opt out
- Continuous
 - Initial agreement to participate but continuing discussion and further information after recruitment
 - May improve validity

Multiple Studies How many is too many?

- Will validity of individual trials be affected?
- Participation in multiple trials may lead to:
- 1. Detection errors (fail to describe and event because it is too rate)
- 2. Misattribution (falsely attribute an event to the trial)
- 3. Uncertainty (information not precise enough)
- Not additional stress on the infant (surprisingly)

When Should Multiple Trials be Avoided?

- Each trial looking at a novel therapy that is not well described (e.g. not approved or not marketed)
- 2. Trials have similar primary end points
- 3. Each trial targets the same organ

When Should Multiple Trials be Considered?

- 1. Brief <u>pharmacokinetic</u> and/or safety studies
- 2. <u>Device</u> validation studies
- 3. Factorial studies with adequate sample sizes
- 4. Trials of <u>routinely</u> used and standard interventions

Parental Views of Multiple Studies

- No data to say that parents are stressed or consider it unethical to be approached for multiple studies
- >75% consider it acceptable to take part in >1 study

• Some units have a research culture despite busy clinical loads

Research Culture in the Unit

- <u>Research Champions</u> are excellent in promoting research, studies and trouble shoot obstacles raised by the clinical team
- Clinical team is usually too busy to do much research
- Avoid throwaway comments like "guinea pigs"
- Brief staff about each project e.g. trial not opened until >80% of staff are briefed. This may take weeks

Clinical Networks Connecting Us Together

- Research networks provide one stop shops to overcome issues in clinical trials
- European Network for Paediatric Research at the Euroepan Medicines Agency (EnprEMA)
- Global Research in Paediatrics (GRuP) Network of Excellence (European)
- US Pediatric Trials Network
- US Consortium Child Health Oversight Committee of the Clinical and Translational Science Awards
- Japan Neonatal Research Network

Outcomes of Interest

Table 1: The top nine outcomes from GONet and COIN.

Preterm Birth Core Outcomes	Core Outcomes in Neonatology (COIN)
Offspring mortality	Survival
Offspring infection	Offspring infection
Gestational age at birth	Necrotising enterocolitis
Harm to offspring from intervention	Brain injury on imaging
Birth weight	Retinopathy of Prematurity
Early neurodevelopmental morbidity	General gross motor ability
Late neurodevelopmental morbidity	General cognitive ability
Gastro-intestinal morbidity	Visual impairment,
Respiratory morbidity	Pain

Collaboration is VITAL

 >20,000 infants are needed to show a clinically significant reduction of 20% in death from 5% to 4%

I just have this feeling If our two	Event Rate in	Event Rate in	Risk Difference	Relative Risk or	Relative Risk	Number needed	TOTAL SAMPLE SIZE REQUIRED FOR 90% POWER			
I just have this feeling If our two departments could just collaborate, we could come up with something that's truly amazing.	Control group (C)	Treatment Group (T)	(C-T =∆)	Risk Ratio (RR=T/C)	Reduction (1-RR)	to benefit or harm (100/ Δ)	0% cross- over in each group	5% cross- over in each group	10% cross- over in each group	15% cross- over in each group
	20%	16%	4%	0.8	0.2	25	3,868	4,776	6,044	7,894
	20%	18%	2%	0.9	0.1	50	16,166	19,960	25,260	32,992
	10%	8%	2%	0.8	0.2	50	8,598	10,616	13,436	17,548
	10%	9%	1%	0.9	0.1	100	36,136	44,164	56,464	73,748
	8%	6.4%	1.6%	0.8	0.2	63	10,964	13,536	17,132	22,376
	8%	7.2%	0.8%	0.9	0.1	125	46,122	56,942	72,066	94,128
	5%	4%	1%	0.8	0.2	100	18,058	22,294	28,216	36,854
	5%	4.5%	0.5%	0.9	0.1	200	76,076	93,922	118,870	155,258

Results must be translated into policy and practice

- <u>Remove ineffective/harmful</u> interventions from practice
- Ensure equity of access to <u>effective and cost</u> <u>effective</u> interventions
- Facilitated by audit, benchmarking, QI activities embedded in regional, national or international networks
- Facilitate monitoring, peer referencing, risk adjusted outcomes
- <u>Highlight excellence</u>

My research tells you what to do. This is an important issue. I can't understand these data tables and I have about 20 important issues on my plate.

• Clinical trials have been, and continue to be vital to improve the health of sick newborn infants

Conclusions • <u>Collaboration</u> is necessary

 There are many questions in newborn medicine that if unanswered will lead to death and disability in THOUSANDS of the SICKEST INFANTS

Thank you

Trends in outcomes among very low birthweight infants in Japan

from NRNJ database 2003-2016

Masanori Fujimura Satoshi Kusuda Yumi Kono Hidehiko Nakanishi Shinya Hirano Naohiro Yonemoto

Department of Neonatology, Osaka Women's & Children's Hospital Department of Pediatrics, Kyorin Medical University Department of Pediatrics, Jichi Medical University Department of t Neonatology, Kitasato University Medical School Department of Neonatology, Osaka Women's & Children's Hospital Department of Public Health, Juntendo University

This presentation tries in accordance with "the Reporting Outcomes of Extremely Preterm Births" (Matthew A. Rysavy, Neil Marlow, Lex W. Doyle et al, PEDIATRICS Volume 138, number 3, 2016: e2 0160689

Neonatal Research Network of Japan

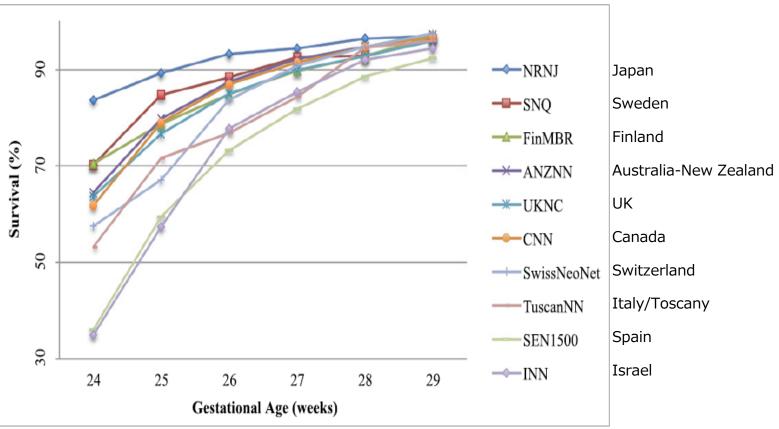
NRNJ is a non-profit organization with main support from neonatal professions

2021

Disclosures

Dr. Masanori Fujimura has disclosed the following relationships. Any real or apparent conflicts of interest related to the content of this presentation do not exist.

Organization Consultation with Novelpharma (intravenous indomethacin) 1998~2003



Title	Trends in outcomes among very low birthweight infants in Japan					
	from NRNJ database 2003-2016					
Purpose	To analyze the NRNJ database for trends in outcomes of extreme-					
	preterm infants, with a focus on 22 week.					
Subjects	♦Very low birthweight infants ≤1,500g in Japan					
	- Include infants born alive but died in the delivery room.					
	♦ N=60,632 (2003~2016), 65% of census of Japan. 99.9% were Japanese.					
Definition	Database Operation Manual					
	The developmental quotient (DQ) at 3 years was by chronological age.					
Statistics	EZR. Significance of difference: P<0.001					
Figures	Excel					

Contents

- 1. Background, Study population
- 2. Trend of mortality and neurodevelopmental impairments
- 3. 22 week of gestation
- 4. Maternal factors
- 5. Neonatal factors

FIGURE 1

GA-specific survival for infants (24–29 weeks' gestation, birth weight <1500 g) born between 2007 and 2013 and admitted to neonatal care in the iNeo networks.

Helenius K, Sjörs G, Kusuda S et al. <u>Survival in Very Preterm Infants: An International</u> <u>Comparison of 10 National Neonatal Networks.</u> Pediatrics. 2017 Dec;140(6):e20171264. doi: 10.1542/peds.2017-1264.

Analysis of NRNJ database is one of the way to evaluate the real data of preterm infants for the evidence discovery.

<u>Real-World Evidence</u> | FDA https://www.fda.gov/science-research/science-and-research-special-topics/real-world-evidence Real-world data (RWD) and real-world evidence (RWE) are playing an increasing role in health care decisions.

What is RWE?

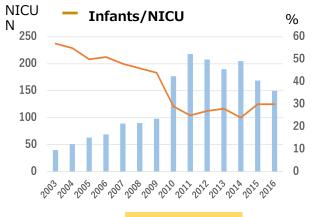
Real-world *evidence* is the clinical evidence regarding the usage and potential benefits or risks of a medical product derived from analysis of RWD. RWE can be generated by different study designs or analyses, including but not limited to, randomized trials, including large simple trials, pragmatic trials, and observational studies (prospective and/or retrospective).

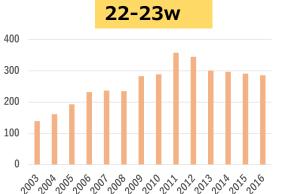
The value of NRNJ database is based on the facts;

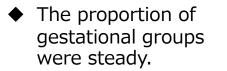
- 1. The observational study is now recognized to be a field to generate evidence.
- 2. Extreme prematurity is one of the major interests in neonatal medicine.
- 3. Neonatal care in Japan experience the frontier in preterm care. The NRNJ database currently contains appx. 1,000 cases of 22 week and 3,000 cases of 23 week which are ready for analyses in relation with their outcomes up to 3 years of age.

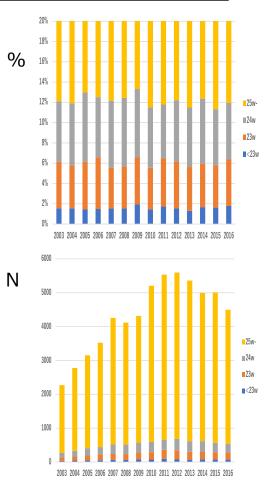
Annual trend (2003~2016)

Study population/year

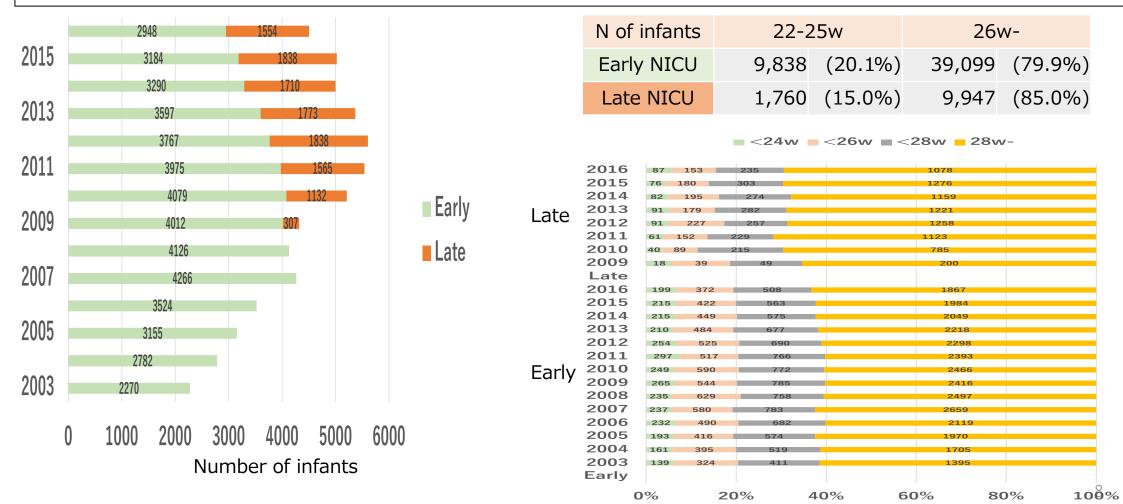

NRNJ Database 2003-2016




Since 2010 Level 2 centers joined NRNJ and the number of NICUs doubled, with the increase of total N and decrease of cases/NICU(%).


• Number of 22-23w cases increased to 2011, then started to decrease.

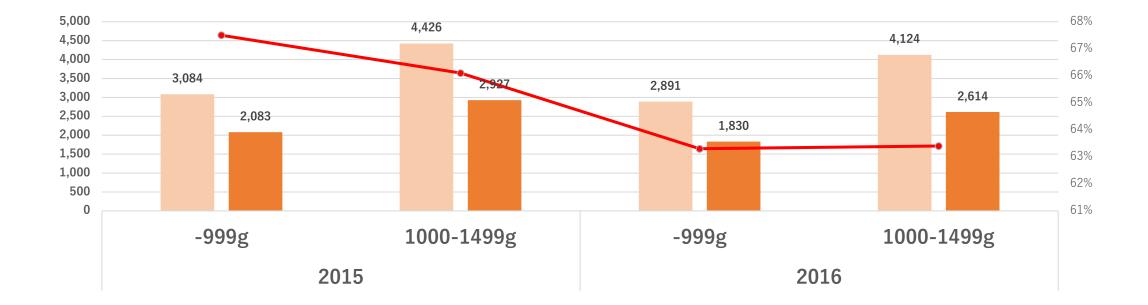
	22w	23w	24w	25w-	Infants Total	22+23w	N of NICUs	Infants /NICU
2003	35	104	136	1,995	2,270	139	40	57
2004	43	118	170	2,449	2,780	161	51	55
2005	45	148	216	2,744	3,153	193	63	50
2006	52	180	209	3,082	3,523	232	69	51
2007	65	172	281	3,741	4,259	237	89	48
2008	63	172	278	3,608	4,121	235	90	46
2009	83	200	292	3,741	4,316	283	98	44
2010	75	214	310	4,607	5,206	289	177	29
2011	95	263	295	4,885	5,538	358	218	25
2012	86	259	339	4,915	5,599	345	208	27
2013	70	231	315	4,745	5,361	301	190	28
2014	83	214	321	4,378	4,996	297	205	24
2015	81	210	277	4,444	5,012	291	169	30
2016	80	206	252	3,960	4,498	286	150	30
Total	956	2,691	3,691	53,294	60,632	3,647		



Dataset072297cat

Time of Participation to NRNJ (Early and Late NICUs)

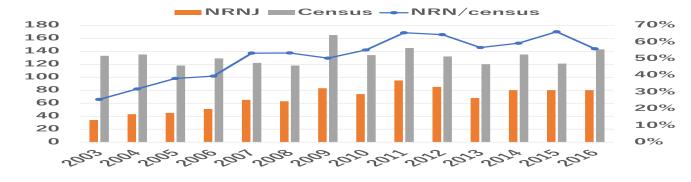
- Infants in NICUs of early participation to NRNJ(2003~2016) were 48,937 (80.7%), and late participation (2009~2016) were 11,707 (19.3%).
- ◆ The proportion of earlier gestation was smaller in Late NICUs.



Birth Census of Japan vs NRNJ data-base

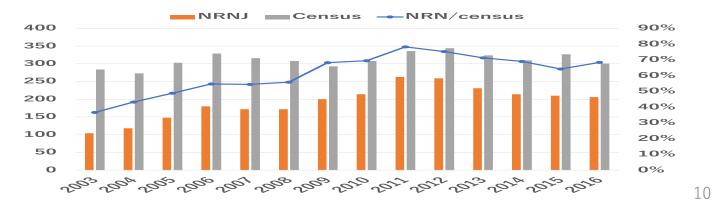
• NRNJ data-base was approximately 65% of very low birthweight infants of birth census born in 2015/2016

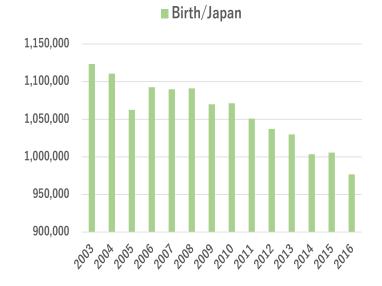
---NRNJ/Japan



NEONATAL RESEARCH NETWORK of JAPAN

Annual trend (2003~2016)


Annual trend of Birth Census Japan and NRNJ database

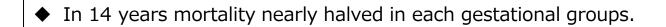

- ◆ Number of births were decreasing sharply since 2010.
- ◆ NRNJ database comprises 60%~70% census of Japan of 22 or 23 weeks.

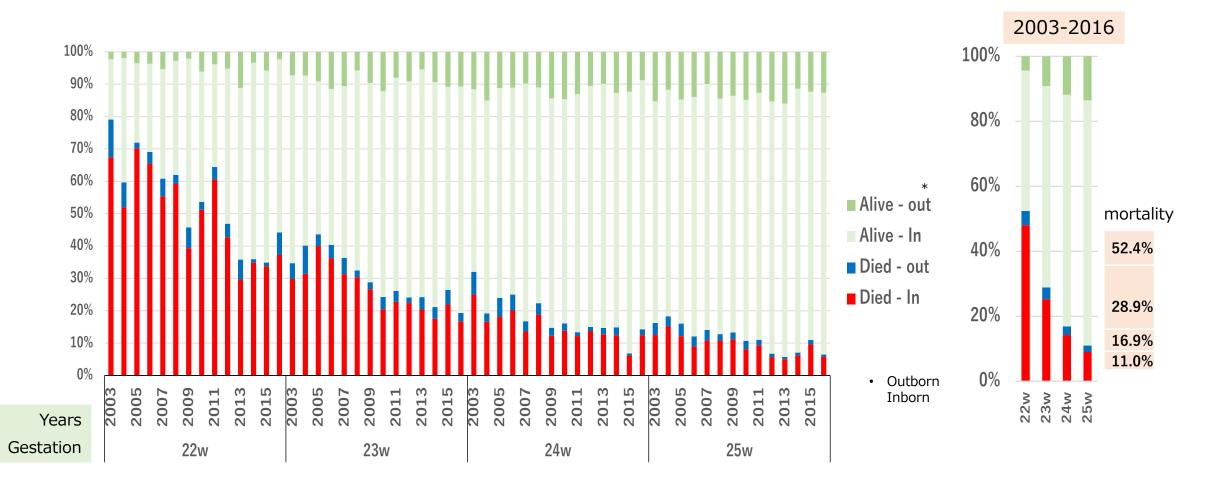
22 weeks

23 weeks

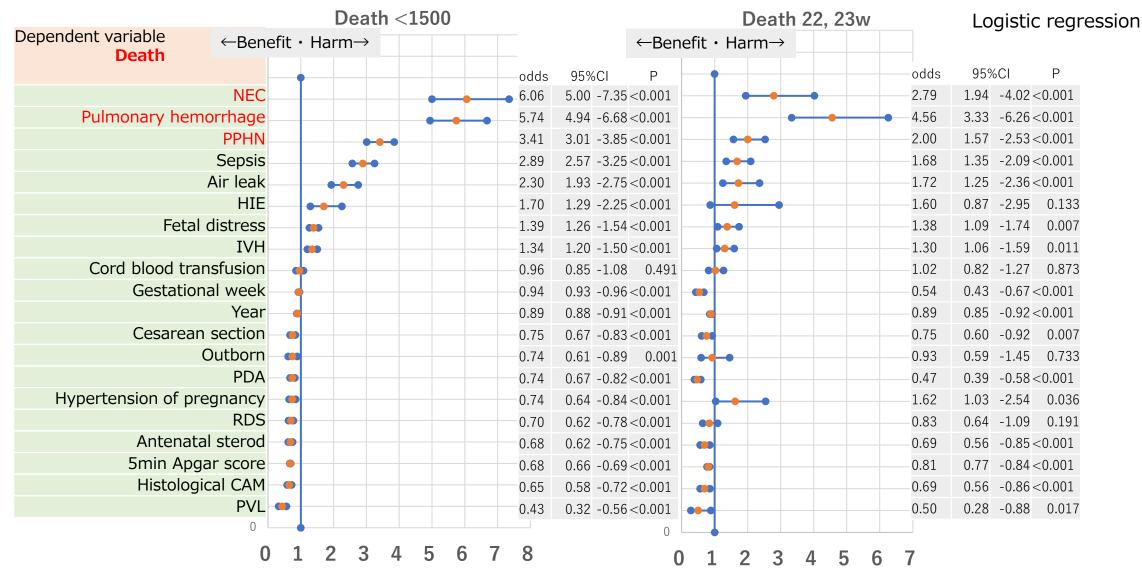
Summary -Study Population-

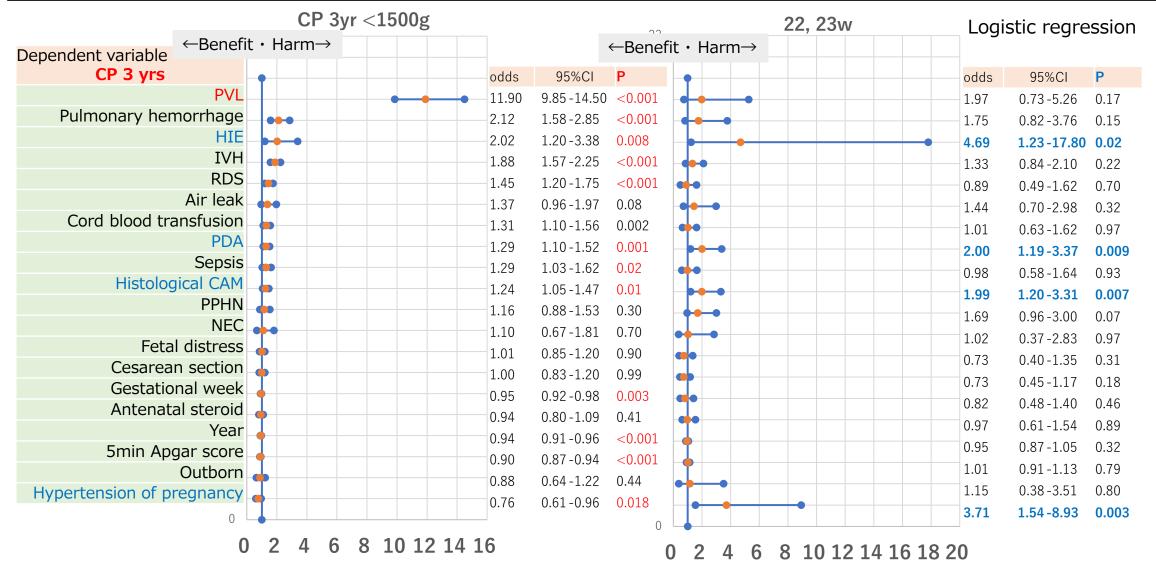
- 1. NRNJ started in 2003 with 34 tertiary NICUs (Early). There were successive increase of NICUs every year, and level 2 NICUs (Late) joined since 2010.
- 2. NRNJ data-base is approximately 65% of very low birthweight infants of birth census born in 2015/2016.
- 3. In Japan number of births were decreasing sharply since 2010.
- 4. 22w and 23wker increased in number in NRNJ until 2011, then decreasing parallel to the number of birth.


Contents


1. Study population

- 2. Trend of mortality and neurodevelopmental impairments
- 3. 22 week of gestation
- 4. Maternal factors
- 5. Neonatal factors

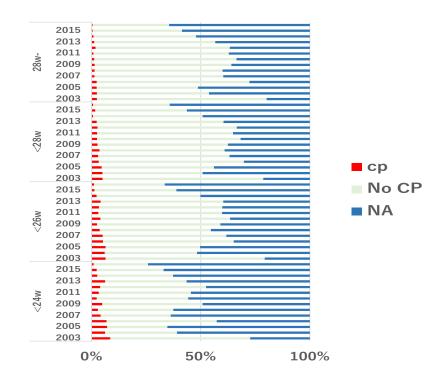

Annual trend of mortality for 22w, 23w, 24w & 25w(In/Out born)


Perinatal factor for **Death** (comparing <1500g and 22-23w)

◆ Top three are NEC, pulmonary hemorrhage and PPHN both for <1500g and 22-23 weeks.

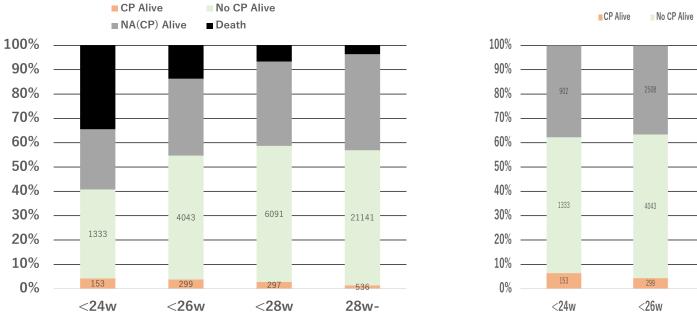
Perinatal factor for CP 3 yrs (comparing <1500g and 22-23w)

- PVL is the strongest factor for <1500g.
 - For 22-23 weeks HIE, PDA, histological CAM and hypertension of pregnancy are significant factors.

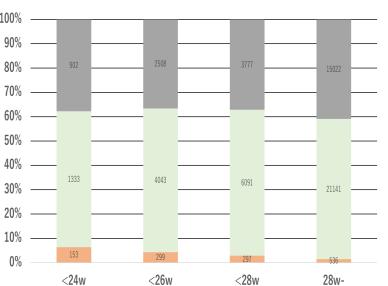


NRNJ Follow-up

- Each participating center registered the NICU and follow-up data.
- The follow-up were done by neonatologists and psychologists based on "Protocol for the multicenter follow-up study of VLBW infants in NICU-network database", supported by Japan Neonatal Follow-up Study Group.
- The assessment was performed at a chronological age of 36–42 months. The developmental quotient (DQ) at 3 years was by chronological age. Cognitive functions were assessed using the Kyoto Scale of Psychological Development (KSPD) test*.
 (KSPD-DQ<70 is equivalent to Bayley III-DQ<85)

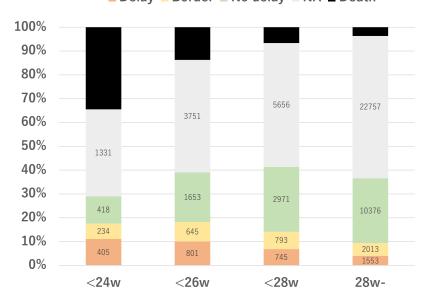

* Kono Y, Yonemoto N, Kusuda S, *et al*. Developmental assessment of VLBW infants at 18 months of age: a comparison study between KSPD and Bayley III. *Brain Dev* 2016;38:377–85.

- A large proportion of infants "Not Available" has been a major limitation in NRNJ database.
- Percentage of NA increased, indicating the follow-up rate deteriorated.



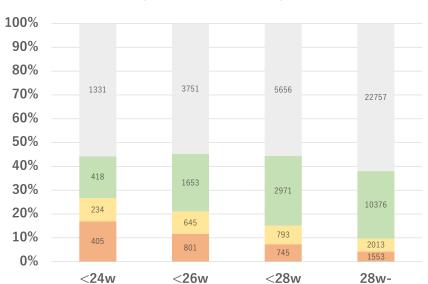
◆ A large proportion of infants "Not Available" has been a major limitation in NRNJ database.

Follow-up / CP


Follow-up / CP

NA Alive

NA and Death categories will be excluded in the following analysis unless otherwise stated.



◆ A large proportion of infants "Not Available" has been a major limitation in NRNJ database.

Fpllow-up/ DQ

Delay Border No delay NA

Fpllow-up/ DQ

NA and Death categories will be excluded in the following analysis unless otherwise stated.

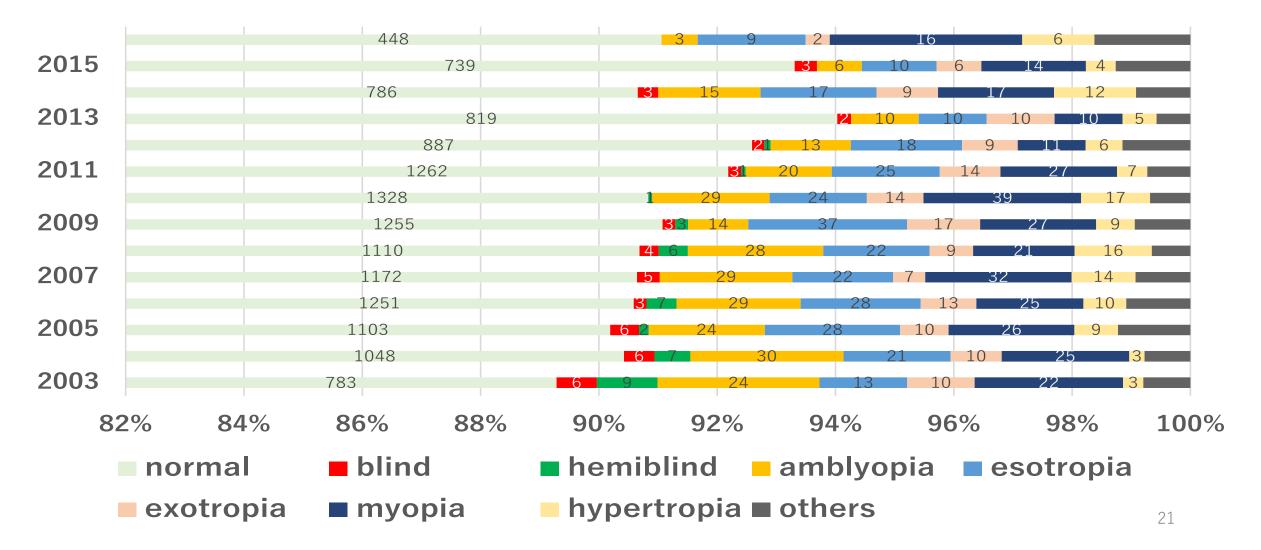

Cerebral Palsy

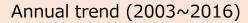
◆ The incidence of CP was decreasing.

СР	odds ratio	95%CI	Р						
Year	0.92	0.91-0.94	< 0.001						
Adjuste	d by gestational	week		Cere	ebral	palsy	/		
				465				1 23	
2015	5			755			8	47	
				950			11	53	
2013	3			1593			5	103	
				1796			19	122	
2011	-			1285			37	77	
				1380			30	89	
2009				1269			26	83	
2007	7			1167			22	85	
2007				L183 269		21	.4	91	
2005	5		1110	209	23			115	
2000			106	58		22		96	
2003	3	/	/87		21			86	
	80%		85	%	90	%	95	5%	100%
				Norma		CP?	CP		

Cognitive Development

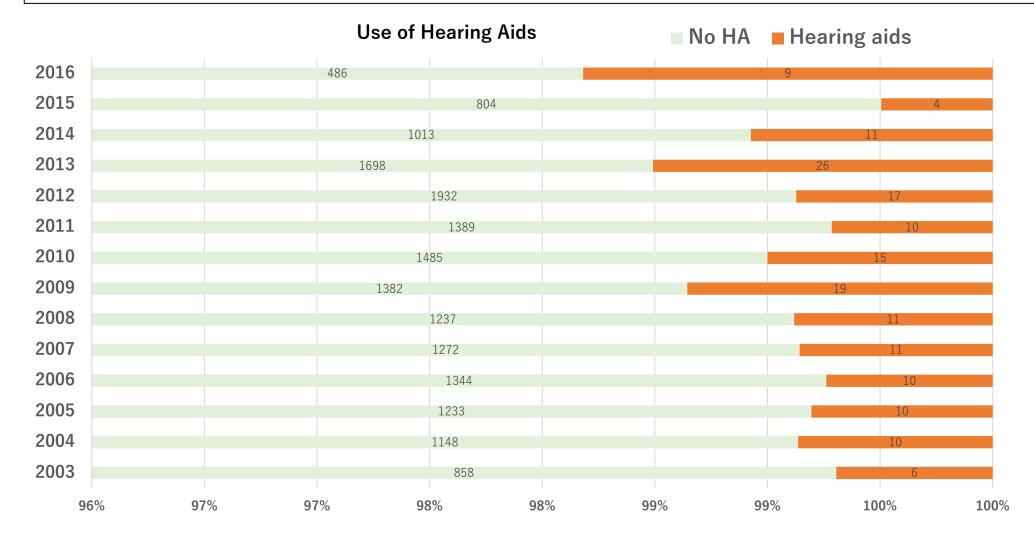
Cognitive development showed no improvement.

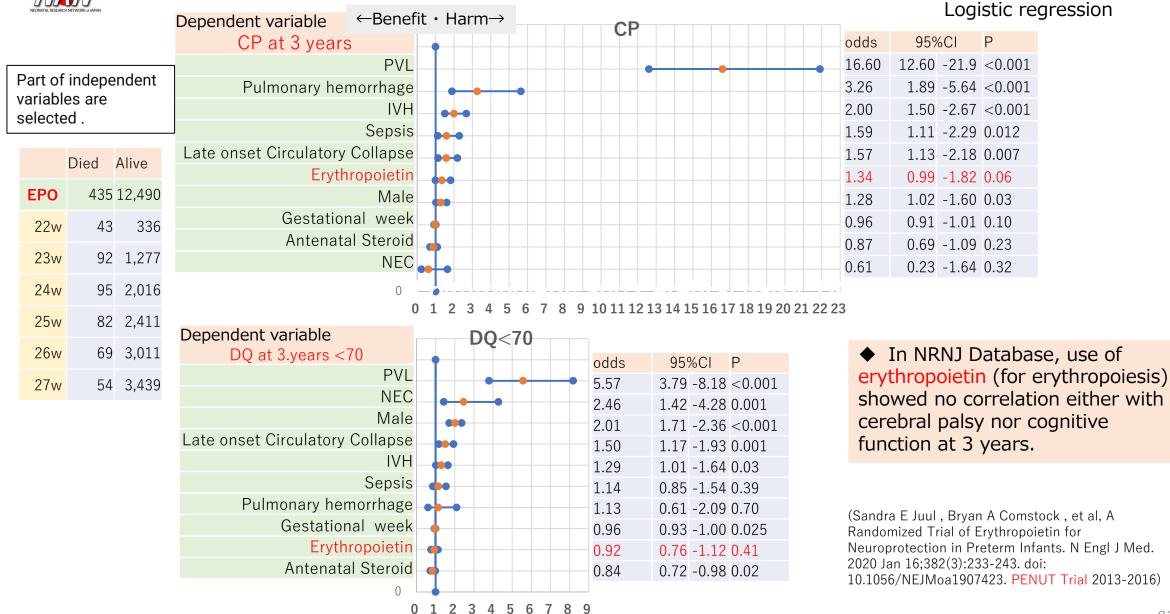



A DQ score of KSPD <70, which represents a 70% achievement of standardized performance for the chronological age, was interpreted as significantly delayed according to the protocol by the Japan Neonatal Follow-up Study Group. A DQ score of KSPD <70 is equivalent to a Bayley III cognitive score <85.1

Visual Impairment

Visual impairments decreased until 2013, then with some relapse?



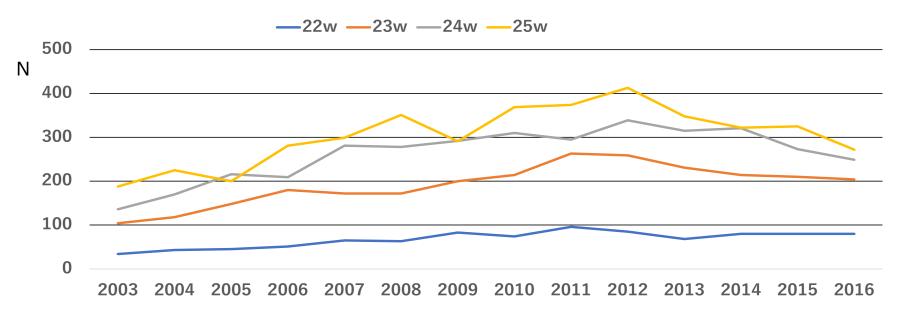

Use of Hearing Aids

• Use of hearing aids remained within annual variation.

Erythropoietin and Cerebral palsy, DQ

Summary -mortality and impairment-

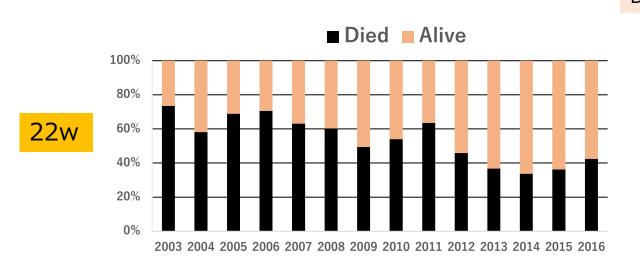
- 1. In 10 years (2003-2012) mortality nearly halved in each gestational groups.
- 2. Hypoxic ischemic encephalopathy, necrotizing enterocolitis, and pulmonary hemorrhage, are top three factors for "Cerebral palsy at 3 years or death" in <1500g and 22-23w
- 3. A large proportion of infants "No Available" has been a major limitation in NRNJ database.
- 4. The incidence of CP and visual impairments were decreasing.
- 5. Cognitive development shows no improvement.
- 6. Visual impairments decreased until 2013, then with some relapse?
- 7. Use of hearing aids remain variable.


Contents

- 1. Introduction
- 2. Trend of mortality and neurodevelopmental impairments
- 3. 22 week of gestation
- 4. Maternal factors
- 5. Neonatal factors

Trend of Admission of 20w ~ 25w

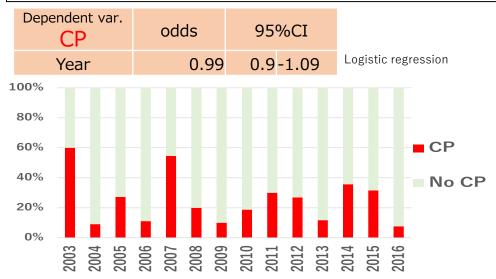
• In 1996 amendment of maternity protection law (artificial abortion $<24w \rightarrow <22w$).

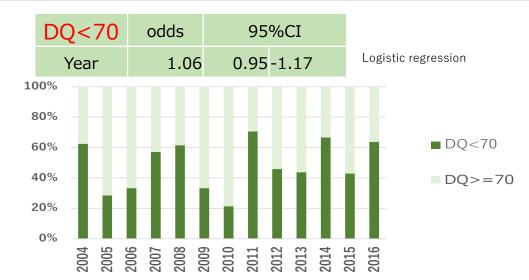


Year	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	Total	
20w	1							1			1	1	1		5	
21w				1						1	1	3			6	J_Cind
22w	34	43	45	51	65	63	83	74	96	85	68	80	80	80	947	∫ effe
23w	104	118	148	180	172	172	200	214	263	259	231	214	210	204	2,689	
24w	136	170	216	209	281	278	292	310	295	339	315	321	273	249	3,684	
25w	188	225	200	281	299	351	291	369	374	413	348	322	325	272	4,258	
Total	463	556	609	722	817	864	866	968	1,028	1,097	964	941	889	805	11,589	

- ◆ The mortality decreased 30% in 14 years for 22 wk.
- After 2011 the odds ratio of year for mortality was not significant i.e. no improvement

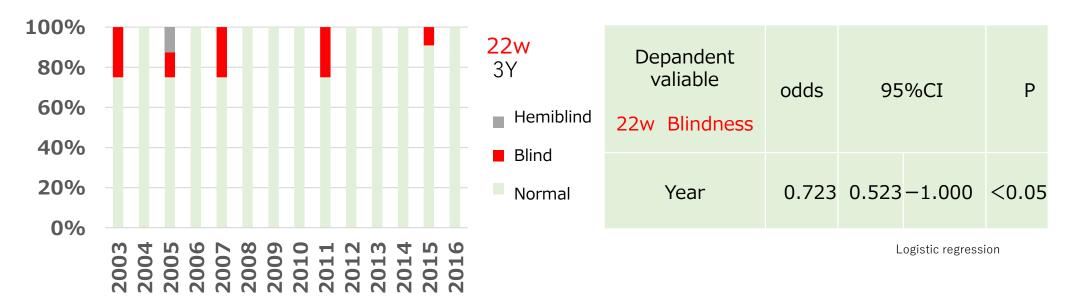
	20v	v				21w				22w													
	200	3 2010	2013	2014	2015	2006	2012	2013	2014	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Died		1 1	_						2	25	25	31	36	41	38	41	40	61	39	25	27	29	34
Alive			1	1	1	1	1	1	1	9	18	14	15	24	25	42	34	35	46	43	53	51	46
Total		1 1	. 1	1	1	1	1	1	3	34	43	45	51	65	63	83	74	96	85	68	80	80	80
Mortality										74%	58%	69%	71%	63%	60%	49%	54%	64%	46%	37%	34%	36%	43%




D	ependent vari	alble :		
	Death	Odds	95%CI	Р
	Year	0.90	0.87-0.93	< 0.001
	Antenatal steroid	0.64	0.48-0.86	<0.01
		N/ 2011		
		Year>2011		
	Death	Odds	95%CI	Р
	Year	0.99	0.86-1.15	NS
	Antenatal steroid	0.49	0.31-0.75	0.001 Logistic regression
				Logistic regression

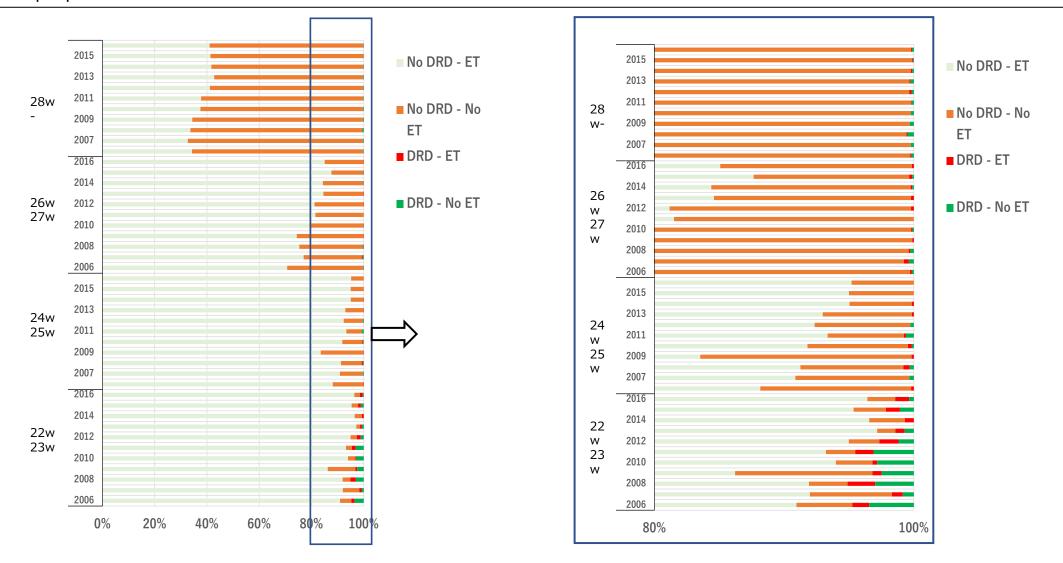
CP & DQ<70 at 3 years 22 wk

◆ The CP rate for 22 week decreased (NS). The rate of DQ<70 increased (NS).



Year	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
СР	3	1	3	1	6	3	2	3	6	7	2	5	6	1
No CP	2	10	8	8	5	12	18	13	14	19	15	9	13	12
Total	5	11	11	9	11	15	20	16	20	26	17	14	19	13
%CP	60.0%	9.1%	27.3%	11.1%	54.5%	20.0%	10.0%	18.8%	30.0%	26.9%	11.8%	35.7%	31.6%	7.7%
DQ<70	0	5	2	2	4	8	6	3	12	11	7	8	6	7
DQ>=70	0	3	5	4	3	5	12	11	5	13	9	4	8	4
Total	0	8	7	6	7	13	18	14	17	24	16	12	14	11
%DQ<70	-	62.5%	28.6%	33.3%	57.1%	61.5%	33.3%	21.4%	70.6%	45.8%	43.8%	66.7%	42.9%	63.6%

Visual impairment at 3 years 22 wk


• Blindness significantly decreased.

22w	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Normal	3	8	6	5	3	4	6	5	3	5	7	3	10	3
Bi-lateral blind	1		1		1				1				1	
Hemi-lateral blind			1											
Total	4	8	8	5	4	4	6	5	4	5	7	3	11	3

Relations of Delivery room death/ Endotracheal intubation / Gestational weeks

- ◆ Majority are "No DR death- ET" (increase) and ●"No DR death- No ET"(decrease).
- Rate of " DR death ET" and "DR death No ET" are larger in infants 22~23 weeks than infants>23w, and this proportions decreased toward 2016.

30

Summary -22 week-

- 1. In 2003~2016 there were small increased rate of 22 & 23 wks gestation.
- The mortality decreased 30% in 14 years for 22 week. After 2011 the odds ratio of year for mortality was not significant i.e. no improvement
- 3. The CP rate for 22 week decreased (not significant).
- 4. The rate of DQ<70 increased (not significant).
- 5. Blindness significantly decreased.
- 6. Delivery room death rate of 22, 23w started to decrease since 2012

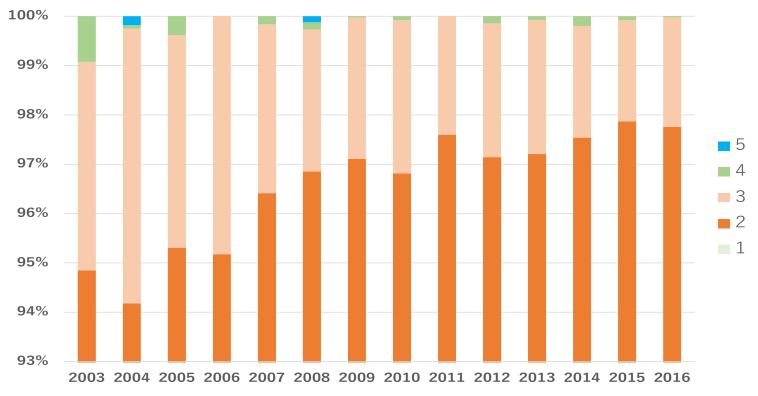
Contents

- 1. Introduction
- 2. Trend of mortality and neurodevelopmental impairments
- 3. 22 week of gestation
- 4. Maternal factors
- 5. Neonatal factors

Mode of Delivery

◆ Increase of Cesarean section for 22w and 23w.

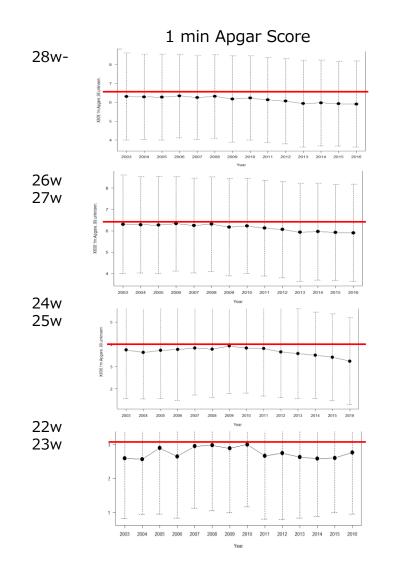
	Vaginal	Vacume or Forceps Cesarean	♦ ≥24w	Subset: ≧24w			
->	2015 2012		Odds ratio for Cesarean section was 1.03/year and 1.07/gest.	Dependent va	nr. odds	95%CI	Р
28w-	2009		week	Year	1.03	3 1.03-1.04	< 0.001
	2006 2003 2014			Gest. week	1.07	7 1.06-1.08	<0.001
<28w	2014 2011 2008 2005 <u>2016</u>						
<26w	2013 2010		◆ 22, 23w	Subset: 22, 23	w		
∨ 30	2007 2004		Odds ratio for Cesarean section	C/section	odds	95%CI	Р
	2015		was 1.10/year and 3.12/gest. week	Year	1.10	1.08-1.12	< 0.001
<24w	2012 2009		WEER	Gest. Week	3.12	2.66-3.67	<0.001
	2006 2003					Logistic regress	sion

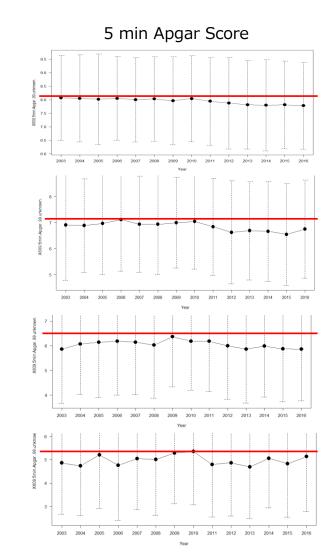

0% 20% 40% 60% 80% 100%

Multiple Pregnancy

◆ Triplets, Quads, Quins decreased by 2011.

◆ Triplets were still born approx. 2%, and Quads occasionally are seen.


Contents


- 1. Introduction
- 2. Trend of mortality and neurodevelopmental impairments
- 3. 22 weeks of gestations
- 4. Maternal factors
- 5. Neonatal factors

1 min & 5 min Apgar Scores

◆ 1 min & 5 min Apgar Scores declined after Level 2 & 3 NICUs merged in 2010.

NICU category Late had odds ratio 1.08 (Early=1).

	Dependent variable 5 min Apgar Score <4 (Asphyxia)										
NICU Early=1	odds	95%	CI	Ρ							
Gestation week	0.74	0.73	0.75	< 0.001							
Year	1.02	1.01	1.02	< 0.001							
NICU <mark>Late</mark>	1.08	1.02	1.16	0.013							

Logistic regression

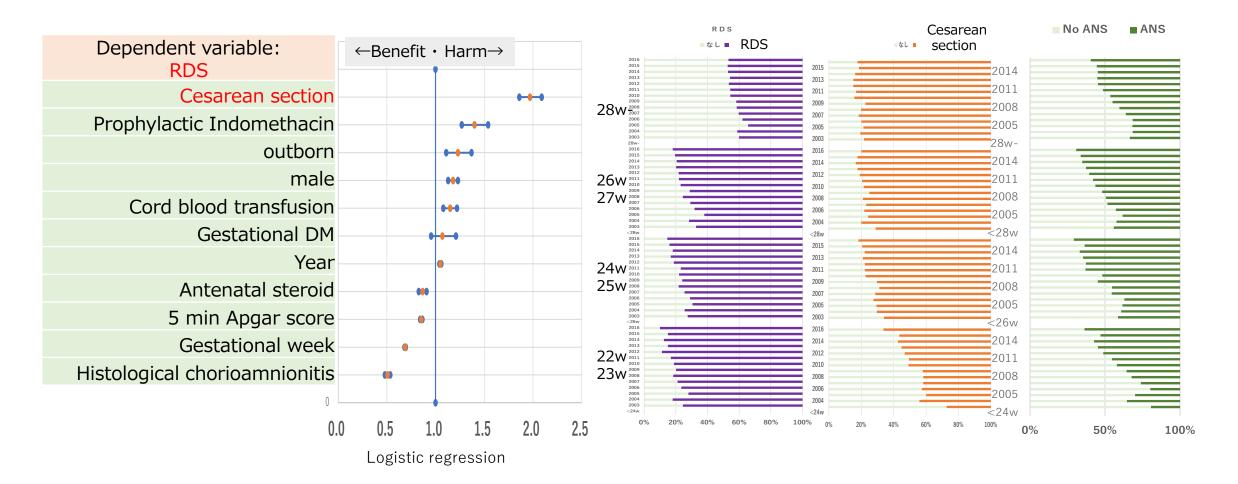
Annual trend (2003~2016)

Acute Respiratory Disorders

Dependent var.: RDS	odds	95	%CI	Ρ	
Gest. week	0.704	0.699	0.709	< 0.001	
Year	1.050	1.050	1.060	< 0.001	
	Logist	tic reg	ressior	ı	

Pulmonary Hemorrhage	odds	95%	Ρ	
Gest. week	0.818	0.804	0.832	< 0.001
Year	0.970	0.958	0.982	< 0.001
RDS	3.060	2.670	3.510	< 0.001

Air Leak	odds	95%CI		Р
Gest. week	0.836	0.821	0.852	< 0.001
Year	1.010	0.998	1.020	NS
RDS	1.810	1.600	2.060	< 0.001


PPHN	odds	95%	CI	Р
Gest. week	0.781	0.770	0.791	< 0.001
Year	1.060	1.050	1.070	< 0.001
RDS	1.420	1.300	1.560	< 0.001

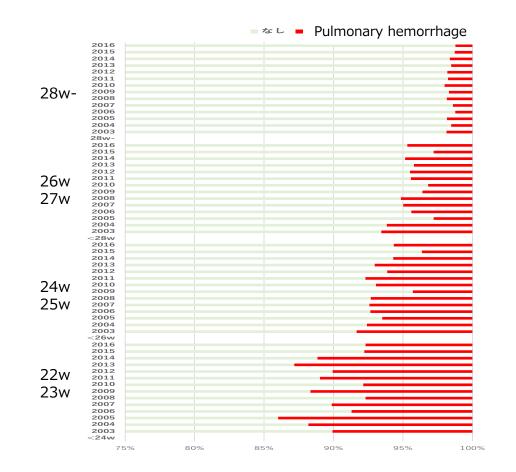
ers	22, 23w	24, 25w	26, 27w	28w-
100%	RDS increased		why RDS increased	d?
90% 80% 70% 60% 50% 40% 30% 20% 10%			~~~~	
	2004 2005 2005 2005 2006 2009 2001 2013 2014 2015 2015 2015 2015 2015 2015 2015 2015			
20% 18%	Pulmonary hemorrh	age decreased	Why Pulmonary He	emorrhage decreased ?
16% 14% 12% 8% 6% 4% 2% 0%		2006 2005 2005 2005 2005 2005 2005 2005	2006 2006 2006 2007 2007 2007 2007 2007	2001 2004 2004 2007 2007 2000 2010 2013 2013 2015 2015 2015
2(1{	Air leak	showed no signifi	cant change	
1€ 12 12 10 8 6 2 2 0	2003 2003 2005 2005 2005 2009 2010 2011 2011 2011 2015 2013 2015 2015 2016 2016 2016 2016 2013 2016 2013 2013 2013 2013 2013 2013 2014 2014 2015 2005 2005 2005 2005 2005 2005 2005	2003 2004 2005 2005 2009 2009 2011 2011 2011 2012 2013 2015 2015	2001 2005 2005 2005 2005 2009 2011 2011 2013 2013 2013 2013 2013 2013	2800- 2003 2005 2005 2006 2001 2011 2011 2011 2011 2015 2015 2015
	PPHN ir	ncreased		
30% 25% 20% 15% 10% 5% 0%	2003 2006 2005 2005 2005 2009 2011 2011 2011 2011 2011 2011 2011	2003 2006 2006 2007 2009 2011 2011 2011 2011 2011 2015 2015	2003 2004 2005 2006 2009 2011 2011 2011 2013 2013 2015 2015 2015	2003 2006 2006 2006 2008 2011 2011 2011 2011 2015 2015

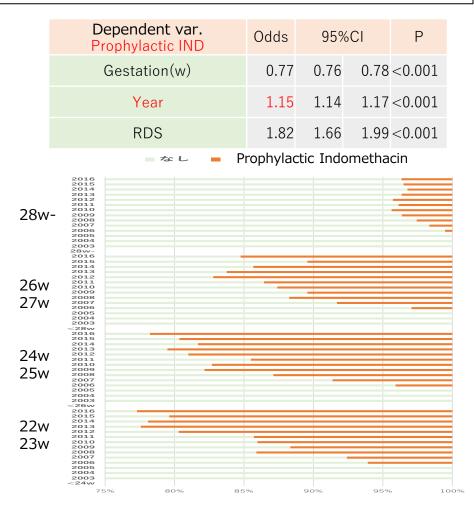
Why RDS increased ?

• The main reason of increasing RDS may be correlated increase of Cesarean section adjusted with antenatal steroid.

Why Pulmonary Hemorrhage decreased ?

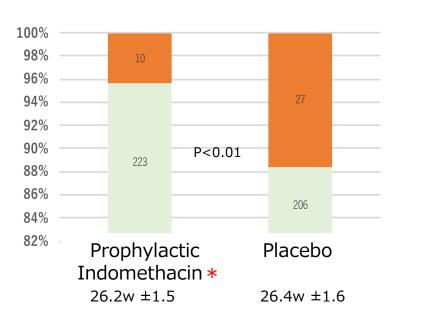
- In the textbook "pulmonary hemorrhage correlates with RDS" . Why pulmonary hemorrhage decreased with RDS increasing?

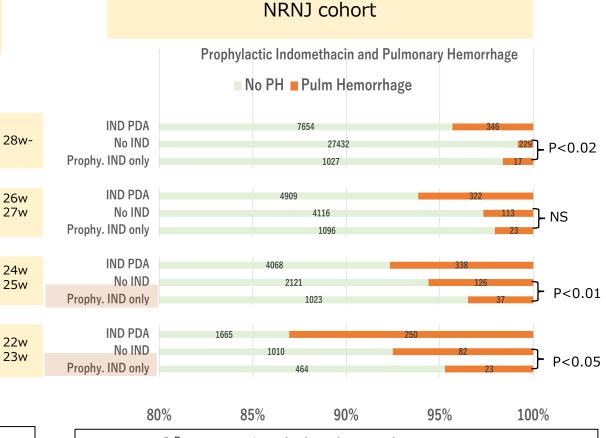

	Dependent va RDS	r. Odds	95%	6CI	Ρ
	Year	1.05	1.05	-1.06	< 0.001
	Gestation(w)	0.70	0.70	-0.71	< 0.001
28\	2016 2015 2014 2013 2012 2012 2011 2010		R D S なし ■ RE		tic regressio
26\ 27\	2003				
24v 25v	2003 28w 2016 2015				
22\ 23\	N 2015 2014 2013 2012	20% 40	0% 60	9% 80	% 100%


Pulmon	ary hemo	orrhage	Odds	95%CI	Ρ
Ge	estation(v	v)	0.82	0.80-0.83	<0.001
	Year		0.97	0.96-0.98	<0.001
	RDS		3.06	2.67-3.51	<0.001
28w-	2016 2015 2014 2013		肺出 ■なし		hemorrhage
26w 27w	2012 2011 2011 2010 2008 2008 2008 2006 2006 2006 2006 200				
24w 25w	2006 2005 2004 2003 2016 2016 2015 2014 2013 2012 2011 2010 2009 2008 2009 2008 2007 2005 2006				
22w 23w	2003 206 2016 2015 2015 2014 2012 2011 2011 2010 2005 2005 2005 2005	80%	85%	90%	5% 10%

Why Pulmonary Hemorrhage decreased with RDS increasing ?

• The answer will be increasing administration of prophylactic Indomethacin.



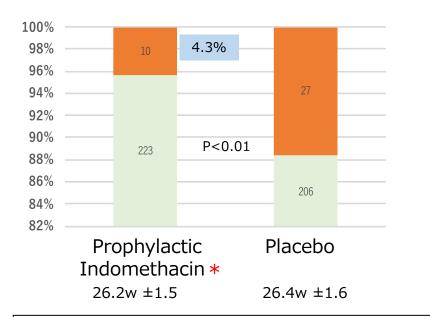


Prophylactic Indomethacin

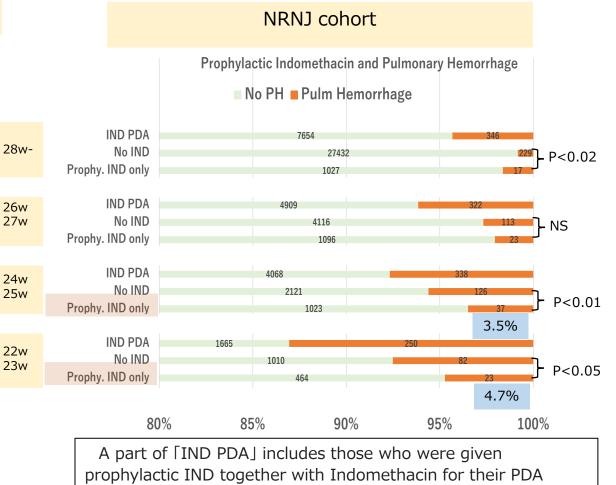
- ◆ In NRNJ-RCT of Prophylactic Indomethacin pulmonary hemorrhage PH was reduced.
- ◆ In NRNJ cohort Prophylactic Indomethacin reduced PH compared with no IND in infants <26w.

A randomized placebo controlled trial for the IVH prevention 1998-2003 (NRNJ) Prophylactic Indomethacin and Pulmonary Hemorrhage(<1000g)

* Starting within 6 hours of birth, 3 doses of IND or placebo were given with 6 hours' continuous i.v. infusion every 24 hours. IND was given at the dose of 0.1 mg/kg-wt/dose. A part of [IND PDA] includes those who were given prophylactic IND together with Indomethacin for their PDA treatment.


No PH Pulmonary Hemorrhage

Prophylactic Indomethacin

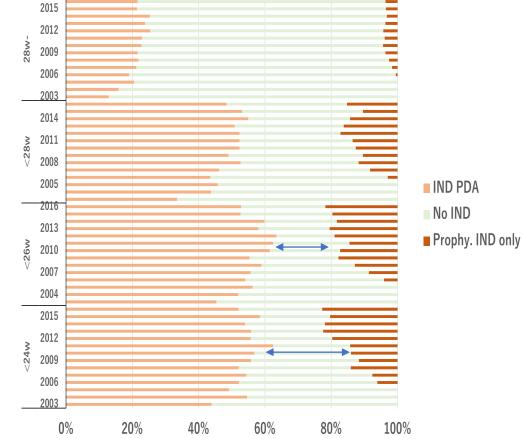

It may be worth to note that the pulmonary hemorrhage ratios of infants given prophylactic IND were very close in RCT 4.3%(10/233), in NRNJ cohort 4.7%(23/487) for 22-23w & 3.5%(37/1060) for 24-25w.

A randomized placebo controlled trial (NRNJ) Prophylactic Indomethacin and Pulmonary Hemorrhage(<1000g) 1998-2003

No PH Pulmonary Hemorrhage

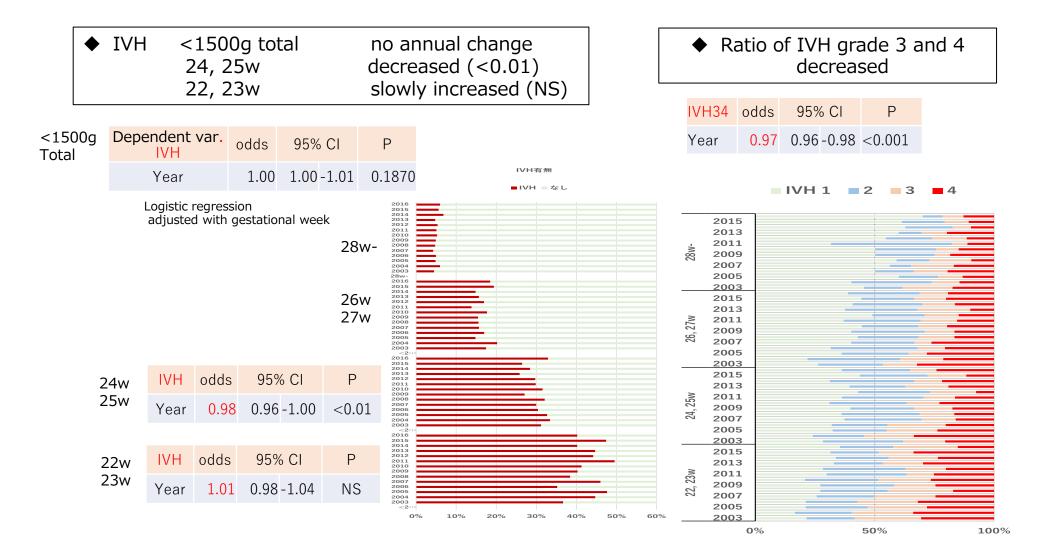
* Starting within 6 hours of birth, 3 doses of IND or placebo were given with 6 hours continuous i.v. infusion every 24 hours. IND was given at the dose of 0.1 mg/kg-wt/dose.

treatment.

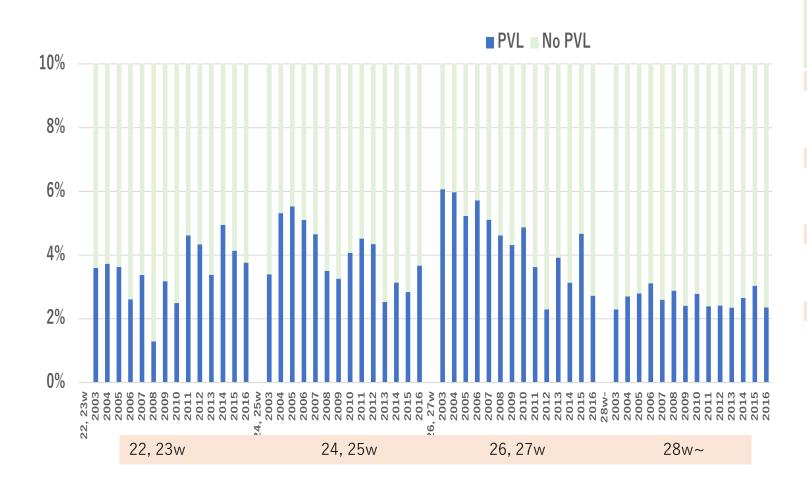


There is a room for prophylactic indomethacin.

- Pulmonary hemorrhage is one of three major factors to cause "CP or death at 3 years" in NRNJ database.
- Prophylactic indomethacin can play a significant role in reducing pulmonary hemorrhage.
- The prevalence of P-IND has been around 20% since 2012, and there is a room for P-IND to expand for infants <26w. (Quality Improvement)

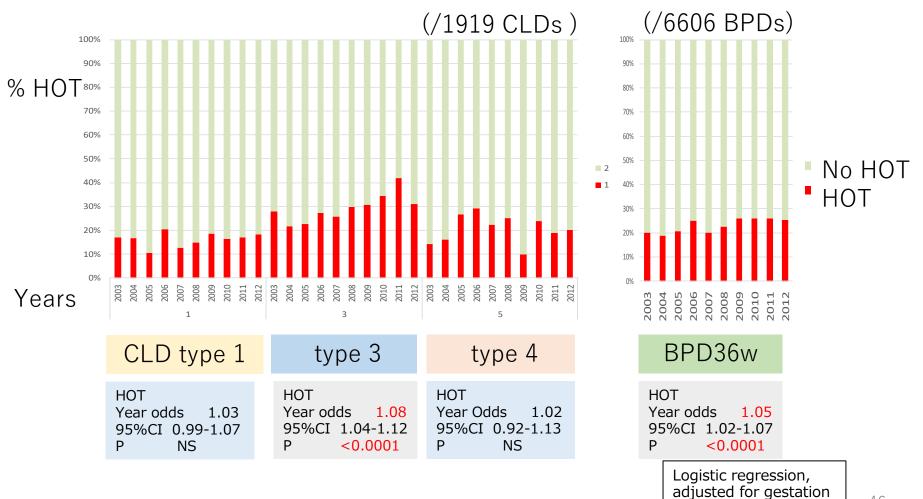

NRNJ was involved in the IND clinical trial since 1998. Intravenous indomethacin was labeled in 2006 in Japan.

	<24w			<26w	
	Prophy. IND only	%P-IND		Prophy. IND only	%P-IND
2006	14	6.1%	2006	20	4.1%
2007	18	7.6%	2007	50	8.6%
2008	33	14.1%	2008	81	12.9%
2009	33	11.7%	2009	104	17.8%
2010	39	14.0%	2010	112	17.3%
2011	48	14.3%	2011	95	14.5%
2012	65	19.7%	2012	138	19.0%
2013	61	22.4%	2013	130	20.5%
2014	62	21.9%	2014	110	18.3%
2015	54	20.4%	2015	112	19.6%
2016	62	22.7%	2016	108	21.8%


Intraventricular Hemorrhage

Periventricular Leukomalacia

◆ PVL significantly decreased in infants of 24, 25w, 26w and 27w.

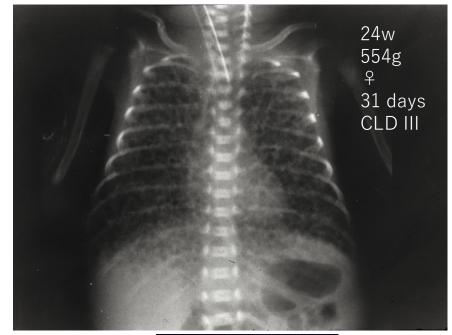


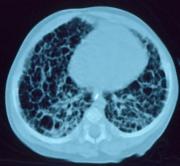
Dependent variable PVL	odds ratio	95%CI	Ρ
	22, 23w		
Gestation	0.97	0.65-1.43	0.86
Year	1.03	0.98-1.08	0.20
	24, 25W		
Gestation	0.9	0.89-0.91	< 0.001
Year	0.98	0.97-0.99	0.002
	26, 27w		
Gestation	0.9	0.89-0.91	< 0.001
Year	0.98	0.97-0.99	0.002
	28w~		
Gestation	0.76	0.73-0.79	< 0.001
Year	1	0.98-1.01	0.73
		Logistic regres	sion

Home Oxygen therapy (CLD type 1, 3, 4 & BPD36w)

Definition

Classification of Chronic Lung Disease *


* Oxygen therapy >28days of age

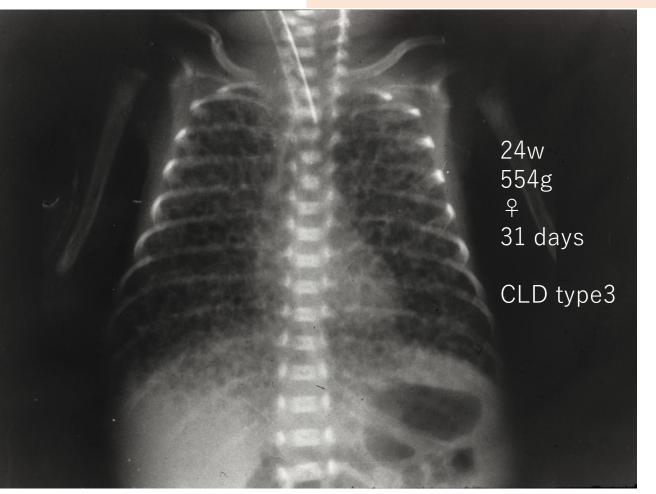

Type of CLD	RDS	High serum IgM、 Chorioamnionitis, Funicitis	Bubbly/cystic Chest X-ray >28days
I	+	—	+
Π	+	—	—
Ш	—	+	+
IV	—	Unknown	+
Ш'		+	
V	—	—	
VI			

CLD Group, MCH Grant (Yunosuke Ogawa 1992、Masanori Fujimura 1996).

Ogawa Y, Fujimura M et al. Epidemiology of Neonatal Chronic Lung Disease in Japan. Acta Paediatr Jpn 1992;34:663-667

CLD type III; Bubbly/cystic appearance on chest X-ray

47



Emphysema of CLD Type ${\rm I\!I\!I}$

Cystic/bubbly appearance

1 diffuse

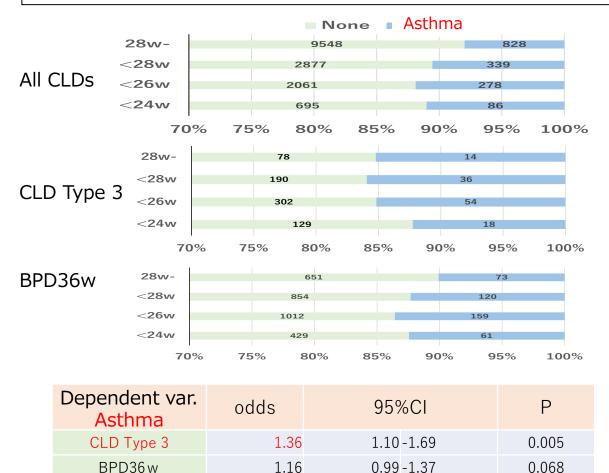
- ② Foamy cystic
- ③ Not interstitial

23.6w 520g CLDIII, PDA ligation on day 25 Hobnail appearance of the lung surface

Gestational week

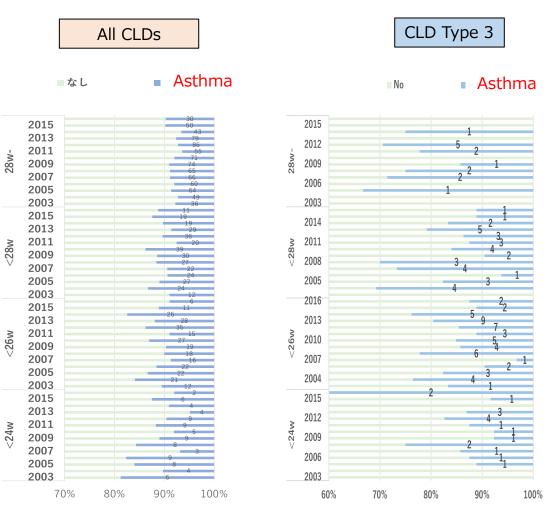
Year

Annual trend (2003~2016)


Chronic Lung Disease & Bronchial Asthma (3 years)

28w-

28w


(24w

Bronchial Asthma (3 years) significantly correlated with CLD Type 3, but not with BPD36w

0.99

1.00

Logistic regression

NS

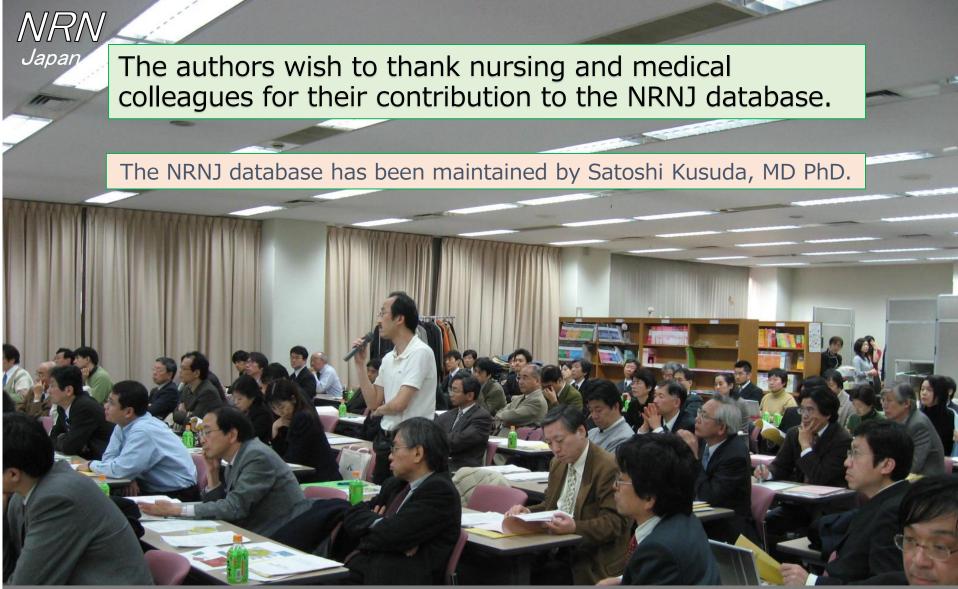
NS

0.96 - 1.03

0.98-1.02

Summary -Neonatal Factors-

- 1. 1 min & 5 min Apgar Scores declined after Level 2 & 3 NICUs merged in 2010.
- 2. RDS increased and pulmonary hemorrhage decreased. Air leak showed no significant change. PPHN increased.
- 3. The main reason of increasing RDS may be correlated with increase of Cesarean section.
- 4. Why pulmonary hemorrhage decreased with RDS increasing? The answer will be increasing administration of prophylactic indomethacin.
- 5. IVH slowly increased for 22, 23w(NS) and decreased for 24, 25w(<0.01). IVH grade reduced.
- 6. PVL significantly decreased in categories 24, 25w and 26, 27w.
- 7. Hot was increasing in CLD type 3 and BPD36w.
- 8. Bronchial Asthma (3 years) significantly correlated with CLD type 3, but not with BPD36w.


MRN

Limitations and advantages of NRNJ database

- 1. A large proportion of infants "Not Available" has been a major limitation in NRNJ database.
- 2. NRNJ depends much of work for data collection upon NRNJ colleagues.

Advantages

- 1. NRNJ database is comprised of very low birthweight infants cared in level 3 and 2 neonatal units and cover 65% census of Japan. "universal"
- NRNJ is a non-profit organization with a continued support from neonatal professions.
 "independent and sustainable"
- 3. NRNJ database is the real world data, and it has been shown to produce the real world evidence. On NRNJ database more than 50 articles were published by NRNJ colleagues in peer reviewed journals.
- 4. The neonatal network database has the potential to excavate a wide range of neonatal evidences with quick and efficient manner.

Masanori Fujimura Satoshi Kusuda Yumi Kono Hidehiko Nakanishi Shinya Hirano Naohiro Yonemoto Osaka Women's & Children's Hospital Kyorin Medical University Jichi Medical University Kitasato University Medical School Osaka Women's & Children's Hospital Department of Public Health, Juntendo University

Neonatal Research Network of Japan

Ministry of Health, Labor and Welfare, Japan

Year	Research Grant in Yen	(US\$)
2004	¥30,000,000	\$272,727
2005	¥31,320,000	\$284,727
2006	¥30,000,000	\$272,727
2007	¥34,000,000	\$309,091
2008	¥28,012,000	\$254,655
2009	¥33,000,000	\$300,000
2010	¥21,632,000	\$196,655
2011	¥25,958,000	\$235,982
2012	¥25,958,000	\$235,982
Total	¥259,880,000	\$2,362,545

Financial supporter 2013~; Japan Society for Neonatal Health and Development and others