一標準化委員会報告—

心筋血流 SPECT 撮像の標準化に関するガイドライン 1.0

2020年7月19日 初 版

日本核医学技術学会標準化推進小委員会

心臓検証班メンバー

青木	卓	(刈谷豊田総合病院)
坪井	孝達	(浜松赤十字病院)
三木	一孝	(朝日大学病院)

委員

青木	卣	(刈谷豊田総合病院)
份由	堅	(和自古立和自於處正)
门中	貝	
對間	博之	(茨城県立医療大学)
長木	昭男	(倉敷中央病院)
松本	圭一	(京都医療科学大学)
三輪	建太	(国際医療福祉大学)
森	一晃	(虎の門病院)
山永	隆史	(大阪市立大学医学部附属病院)

標準化推進小委員会委員長

小野口昌久 (金沢大学)

目 次

- 1. はじめに
- 2. 心臓領域における標準化の考え方
- 3. 使用ファントム
- 4. ファントム作成および解析方法
- 4.1. ファントムの作成
- 4.2. 撮像方法
- 4.3. 画像再構成法
- 4.4. 解析方法
- 5. 画像評価
 - 5.1. 視覚評価
 - 5.2. 物理評価

- 5.2.1. 微分均一性
- 5.2.2. % カウント
- 6. ボトムラインの設定
- 6.1. 使用した EMIT ファントムデータ
- 6.2. ボトムラインの設定
- 7. 画像改善方法
- 付 録
- ・各施設の収集および画像再構成条件
- ・各施設の視覚および物理評価結果
- ・検証用チェックシート
- 謝 辞

参考文献

1. はじめに

心筋血流 single photon emission computed tomography (SPECT) 検査は、虚血性心疾患の狭窄病変の検 出とその重症度,予後および心筋 viability の評価 に用いられ^{1~5)}.国内のガイドラインにおいても 高いエビデンスクラスが示されている⁶⁾。しかし. 心筋血流 SPECT 画像は、収集、処理、表示条件 など多くの因子がその画質に影響を及ぼすため、 施設ごとに異なる画像を出力しているのが現状で ある⁷⁾。2002年9月に発足された 日本核医学技 術学会 核医学画像の定量化・基準化のための調 **査研究ワーキンググループにより、収集・処理条** 件等は機器メーカの推奨値や過去の条件の継承 により決定される例が多いことが確認された⁷⁾。 2008年に日本核医学技術学会 画像の定量化・基 進化のための調査研究ワーキンググループ(臨床 に役立つ基準画像の収集・処理・表示・出力のポ イント)から公表されたガイドラインでは、心筋 血流 SPECT の基準画像に対する具体的な収集・ 画像再構成条件および表示方法を提示した⁸⁾。し かし、未だに標準化の模索は行われており、地域 ごとに単独で行われているのが実情である⁹⁾。そ の理由として、基準となる画像が存在しない、自 施設の画像がどのレベルにあるのかが分からな い、医師における画像の偏向等が挙げられる。そ こで、統一のファントムを用いて、視覚的にある 水準以上にあれば標準化のラインにあると考え、 その基準となるガイドラインを作成したのでここ に公表する。

2. 心臓領域における標準化の考え方

前述した 2008年ワーキンググループ報告時と 比べ,現在は心筋血流 SPECT 画像の診断精度向 上のためにさまざまな技術が研究開発され,臨床 に使用されている¹⁰⁻¹²⁾。したがって,一律な収 集処理条件をガイドラインに記載することは難し いと考える。本ガイドラインでは,単純な構造を した the evaluation system of myocardial image based on technical grounds (EMIT)ファントム(特許 5198023号 平成25年 2月15日登録)¹³⁾を,臨床で 使用している収集処理条件にて短軸像を作成・表 示し,ボトムラインをクリアすることによって,標準化を行う方法(図1)を提案する。なお,対

図1 本ガイドラインによる検証の流れ

象装置は2検出器および3検出器のアンガー型 SPECT装置(診断用 CT 搭載型 SPECT 装置を含む)とし,使用するコリメータの種類や画像再構成の種類は指定しない。

ボトムライン設定には、日本核医学技術学会東 海地方会の施設を中心に EMIT ファントムによる 心筋 SPECT を施行した17データを使用した。な お、提示したボトムラインは^{99m} Tc 製剤用である。

3. 使用ファントム

使用する EMIT ファントムを図2,3 に示す。 本ファントムの構造は,胸部を模した外容器と心 筋部に相当する内容器から成る。心筋部は空間分 解能測定用(欠損の広さ)として,欠損の広さが 5,10,15および20mmの4段階,欠損の深さ が10mm固定,次にコントラスト分解能測定用 (欠損の深さ)として,欠損の深さが2.5,5,7.5 および10mmの4段階,欠損の広さが20mm固 定の計8種類の模擬欠損(以下,欠損)が対側に 均等配列されている。一回の収集で8種類の欠損 を同時に評価できるだけでなく,心筋部の欠損位 置を前壁,中隔,下壁および側壁と自由に配置で きる構造となっている。

図2 EMIT ファントムの外観

図3 EMIT ファントムの内容器の概要

4. ファントム作成および解析方法

4.1. ファントムの作成

臨床での^{99m}Tc 標識心筋血流製剤の投与量は, 一般的に 555 ~ 1,110 MBq が用いられ⁶⁾, そのう ち心筋への集積率は 2 % 弱と報告されている¹⁴⁾。 EMIT ファントムの心筋部は 375 mL である。し たがって,心筋部に封入する放射能濃度 (^{99m}Tc) は,50kBq/mL とした。まず,内容器の内腔(容積: 約 265 mL) にファントム付属の漏斗を使用し水 を充填する。400 mL の蒸留水を準備し,収集開 始時に 18~22 MBq になるよう下記**表 1** を参考に 適切な放射能量を添加し,十分な攪拌を行う。こ の^{99m}Tc の放射能量は重要なので必ず守る必要が ある。

作成した^{99m}Tc 溶液を心筋部へ注入するが(図 4),2箇所の注ぎロネジを外し,8割程度注い だ所で空気抜きが無い側の口(B)を閉め,気泡 を空気だめの口(D)に誘導する。

内容器の取り付けは、空間分解能測定用の欠損 (広さ5,10,15および20mm)が下壁側となる ように配置(空気だめは側壁側)し、ファントム 外容器の P の位置に内容器の A が一致するよう に固定する (図 5)。

4.2. 撮像方法

水準器等を使用して,寝台に対し EMIT ファ ントムが水平となるように設置(図6)し,通 常使用している臨床条件にて収集を行う。EMIT ファントムは静態ファントムである。臨床条件に て心電図同期収集を行っている施設では,模擬心 電図発生装置を使用して収集を行うか,非心電図 同期収集にて SPECT 収集を行う。

4.3. 画像再構成法

本ガイドラインの評価で使用するデータは,非 心電図同期データもしくは心電図同期データの加 算画像である。通常の臨床で用いている画像再構 成条件にて,空気だめが側壁側となるように短 軸像を得る。この時,画像再構成範囲内に EMIT ファントムの空気だめの部分を含むよう,範囲を 広く設定する(図**7**)。

4.4. 解析方法

解析は EMIT ファントム専用の解析ソフトウェ ア(以下,ソフトウェア)を用いる(図8)。

ソフトウェアは、SPECT 画像と MR 画像のテ

99mTc溶液を注ぐ時は ファントムを傾けていれる と泡立ちが少なくなる

空気抜きが無い側 (B)を閉める

気泡を空気だめ(D)へ 誘導する

図 4 ^{99m} Tc 溶液注入時の注意点

調整時間	放射能量
2時間前	51 MBq-62 MBq
1 時間45分前	40 MBq-49 MBq
1時間30分前	33 MBq-40 MBq
1 時間15分前	28 MBq-34 MBq
1時間前	24 MBq-29 MBq
45分前	21 MBq-26 MBq
30分前	20 MBq-24 MBq
15分前	19 MBq-23 MBq
収集開始時間	18 MBq - 22 MBq

図5 内容器の取り付け方向

図 6 EMIT ファントムの配置図

図7 画像再構成範囲の注意点

図8 ソフトウェア画面

ンプレート画像との位置合わせを自動的に行う。 位置合わせは空気だめの部分をランドマークとし ているため、これが含まれないと画像が表示でき なくなる。そして位置合わせした画像の展開図を 作成し、図9で示すサーカムフレンシャルプロ ファイル解析 (circumferential profile analysis) を 行う。

各断面の中心から1°ずつの放射状の線を360本 引き、そのライン上のカウントの最大値をプロッ トしていく。展開図は縦軸にスライス数, 横軸に 360本の%カウントを色別で表すことで作成して いる。そしてこの展開図から図10, 11に示すよ うに深さ方向と広さ方向のプロファイルカーブを 作成する。

得られたプロファイルカーブのそれぞれ頂点を 結ぶ回帰直線を引き,傾き,切片を求めた。また, 欠損の深さおよび広さを自動評価することで,後 述する各指標が算出される(図12)。

位置合わせしたSPECT画像の展開図作成

図9 サーカムフレンシャルプロファイル解析

SPECT展開図からのプロファイルカーブ作成

図10 欠損の深さ方向におけるプロファイルカーブ

SPECT展開図からのプロファイルカーブ作成

図11 欠損の広さ方向におけるプロファイルカーブ

ブロファイルA (深さ)							ブロファイルB (広がり)						
L	ľ]	J	0.58	J	12.30			\bigwedge	V	0.44	J	8.29
-ROI Para 深さ	meter- Mean	S.D.	Min	Rate(%)	AreaP	AreaC	広さ	Mean	S.D.	Min	Rate(%)	AreaP	AreaC
10mm	25.31	18.23	1.82	99.04	57.42	35.25	20mm	26.94	16.28	2.07	100.00	65.40	38.45
7.5mm	44.27	14.67	20.26	95.61	44.85	46.02	15mm	33.02	12.95	12.32	100.00	51.50	44.06
5.0mm	64.32	9.46	46.90	69.31	26.73	58.79	10mm	44.28	9.29	31.38	100.00	38.22	50.87
2.5mm	83.03	3.62	77.64	0.00	0.00	0.00	5mm	67.85	4.40	62.61	87.04	17.31	63.87
Profile Pa	aramete	er				niformity Parameter							
深さ	%Co	ount	広さ	%Count					Tot	al Count	= 3045049	4.00	
10mm	1.9	8	20mm	2.01		oppper cert [30	150		Me	an Count	= 829.22		
7.5mm	22.4	14	15mm	11.77		Lower Right 33	30 210		S.D	. = 33.36		積分均一性:	= 13.76
5mm	50.3	73	10mm	30.14					C7	/. = 4.02		做分均一性:	= 2.15
2.5mm	83.6	63	5mm	59.35							12		
Max	820	.2	Max	774.8							Sav	e [Export

図12 各指標の解析結果

5. 画像評価

心筋血流 SPECT 検査において,心筋に虚血や 梗塞があった場合,それが集積低下部位や欠損と して指摘できることが重要である。SPECT の検 出限界¹⁵⁾を考慮し,視覚評価および物理評価は 欠損の広さ 10 mm が下壁に描出されているスラ イスとした。

5.1. 視覚評価

視覚評価は、各施設で使用している読影端末を 用いる。読影端末にて、下壁の欠損の広さ 10 mm が最も描出されているスライスを表示する。評価 は各施設で心筋血流 SPECT 画像の読影を行う医 師もしくは核医学検査を担当する診療放射線技師 (核医学専門技師が望ましい) で行う。

まず,中隔および側壁にあたる欠損のない領域 (正常部)に対し,図13の均一性評価の指標画像 を参考に,正常部の均一性を5段階評価する。

5. 均一性が十分担保されている

- 4. 正常部に若干の濃度差がある
- 3. 正常部に若干の濃度差があり、心筋辺縁部 が不規則
- 2. 均一な箇所が目立ち,中等度の画像歪みを 認める

 1. 全体的に不均一で、高度の画像歪みを認める 次に、下壁の欠損の広さ10mmに対し、図14 の欠損部評価の指標画像を参考に欠損描出能を5 段階評価し、平均スコアを算出する。

- 5. 高度集積低下を認める
- 4. 中等度集積低下を認める
- 3. 軽度集積低下を認める
- 2. どちらともいえない
- 1. 集積低下を認めない

5.2. 物理評価

物理評価はソフトウェアを用いて行う。ソフト ウェアは各施設の読影端末へインストールする必 要はない。動作環境として OS が windows である ことが条件となるが、実行ファイルを起動するこ とで解析が可能である。また、SPECT 画像デー タを読み込むことができれば、スタンド・アロー ンのパソコンで処理しても問題ない。

5.2.1. 微分均一性

中隔および側壁にあたる欠損部のない領域に対 し、5 画素毎の最大偏差(最大値と最小値の差を その和で除した百分率)を領域内のすべての画素 について算出し、領域内での最大の値を各領域の 微分均一性とする。側壁、中隔の値の最大値を微 分均一性として算出する。

5.2.2. %カウント

下壁に設置した欠損の広さ10mmの欠損部に あたる最小カウント値を,同一スライスの最大カ ウント値で除した百分率を示す。

420

6. ボトムラインの設定

6.1. 使用した EMIT ファントムデータ

17データにて、臨床で使用している収集および 画像再構成条件にて画像を作成した。各施設の収
集,画像処理条件は巻末の付録(表4)として 添付する。ピクセルサイズは4.8 mm ~ 7.8 mm, 収集時間は20~60 sec/step, 360度収集が9デー タ,180度収集8データであった。画像再構成法は, FBP法(filtered back projection method)とし,減弱, 散乱線および分解能補正は行われていない。

6.2. ボトムラインの設定

ボトムラインの設定は、各施設の収集・処理条 件が異なるため、視覚評価を基準として算出した。 視覚評価はガイドライン作成専門メンバーで行っ た。結果を表5(付録)に示す。全データの平均 値は均一性評価が 3.71±0.59, 欠損部評価は 3.76 ±0.56であった。均一性評価の3は正常部に若干 の濃度差があり、心筋辺縁部(エッジ)が不規則 であると定義したが、ここでは均一性が保たれて いると評価した。欠損部評価の3は軽度集積低下 を認めているので、10mmの欠損が認識できて いた。一般的に均一性と欠損のコントラストは. 視覚評価において重要な指標である。図1に示し たように、まずは均一性評価から行うため、もし、 均一性不良か欠損なのかわからない場合は均一性 評価3にはならず、2もしくは1となる。したがっ て、視覚評価のボトムラインは均一性、欠損部評 価ともに3以上と定義した。この視覚評価3以上 のデータ用いて、物理指標のボトムラインを求め た。これらの視覚評価と収集・処理条件について は付録に掲載した。

微分均一性および % カウントのスコアは, そ れぞれ 2.60±0.62 および 58.65±7.79 であった。 以上より, ボトムラインは, 微分均一性では, 平 均値 + 2SD, % カウントは標準偏差が大きいた め, 平均値 + 1.5SD と定義した。表2 にそのスコ アを示す。今回設定した物理評価のボトムライン 算出に用いたデータは n=17 であり, 統計的に考 えると少ないと推察される。今後, データ数を増 やして検討することが望まれる。また, ここでは 画像再構成法を FBP 法のみとしたが, OSEM 法 (ordered subset expectation maximization method) による分解能補正等の行われたデータについて は、今後の課題とする。

表2 物理評価のボトムライン

	ボトムライン
微分均一性	3.84以内
% カウント	70.34以内

7. 画像改善方法

ボトムラインを満たさない時の対策フロー チャートを図15に、前回のガイドライン⁸⁾で示 された^{99m}Tc 製剤心筋血流 SPECT 基準画像の収 集・処理・表示法の一例を表3に示す。 視覚評 価において、ボトムラインを満たすことができな かった場合は、まずは画像の表示法について見直 す必要がある。カラースケールではカラーコード の変更、グレースケールでは階調を square (下凸 の二乗曲線)やシグモイド型(S字カーブ)等へ 変更することを検討する。また、臨床画像にて右 室やバックグランドが消えない程度の lower level の引き上げ (10~20%) も検討する⁸⁾。これら 対策を施した上でもボトムラインをクリアできな い場合、多くは物理評価においてもボトムライン を満たしていないケースが想定されるため、先に 物理評価の改善対策へ進むこととする。

物理評価にてボトムラインを満たすことができ なかった場合、見直すべき点として収集条件では コリメータ、収集時間、ピクセルサイズ(マトリ クスサイズと拡大率). サンプリング方向数があ る. 再構成条件では、処理フィルタ、再構成パ ラメータなどがある⁸⁾。投影データにおける心筋 1ピクセル当たりのカウント数は画質に大きな影 響を与えるため、適切な収集時間を設定すること が必要である。カウント数をNとすると、統計 誤差(%) $i\sqrt{N}/N \times 100$. 統計的雑音 $i\sqrt{N}$ と して表すことができるため、1 ピクセルあたりの カウント数が40~50以下になると急激に統計的 誤差が増えることとなる。よって、統計誤差が 10%以下となる心筋1ピクセルあたり100カウ ント以上となる収集時間が望ましい¹⁶⁾。一般的 に心筋血流 SPECT 検査は、両上肢を拳上して行 う施設がほとんどで、1回の検査時間は20~30 分以内が妥当と考える。収集カウントが少なく収 集時間の延長が難しい施設では、低エネルギー高

図15 ボトムラインを満たさない時の対策フローチャート

表 3 前回のガイドライン⁸⁾で示された^{99m} Te 製剤心筋血流 SPECT 基準画像の 収集・処理・表示法の一例

使用製剤	^{99m} Tc-MIBI/ ^{99m} Tc-tetrofosmin
収集	
コリメータ	LEHR
エネルギーウインドウ	$140 \text{ keV} \pm 10\%$
投与量	296-740 MBq
ステップ角度	5-6度
1 方向あたりの収集時間	20-40秒
マトリクス	64×64
ピクセルサイズ	5-7 mm
処理	
前処理フィルタ	Butterworth, order 5, cutoff 0.42 cycles/cm
再構成フィルタ	ramp
減弱補正	(-)
	(-)
表示(白黒)	
階調	square
表示スケール	100%-0%

分解型コリメータ(LEHR)から低エネルギー汎 用型コリメータ(LEGP)への変更や、収集拡大 率(ピクセルサイズ)、マトリクスサイズの変更 (128×128から64×64)も検討する必要がある。 ピクセルサイズに適したサンプリング方向数は、 サンプリング定理よりN= π D/2Pから求めるこ とができる¹⁴⁾。Nはサンプリング方向数,Dは 有効視野(mm),Pはピクセルサイズ(mm)で ある。以上の項目について収集条件を見直し,問 題なければ次に再構成条件について見直す。画像 再構成法に FBP 法を用いる場合,前処理フィル タとして使用されるバターワースフィルタのカッ トオフ周波数によって画質が大きく異なる¹⁷⁾。 カットオフ周波数が高いほど空間分解能が良い がノイズが多く,カットオフ周波数が低いほど 空間分解能が低く滑らかな画像となる。物理評 価の微分均一性について、ボトムラインを満たす ことができなかった場合は、カットオフ周波数を 低く設定する。%カウントにて、ボトムライン を満たすことができなかった場合は、カットオフ 周波数を高く設定する。ただし、その設定には normalized mean square error (NMSE)法¹⁸⁾によ る確認や、臨床データの視覚評価が重要であり、 診断医と協議しながら決める必要がある。画像再 構成法に OSEM 法を用いる場合、最適な subset や iteration 回数は、装置メーカや各種補正(減弱 補正,散乱線補正,コリメータ開口径に起因した 空間分解能の劣化に対する補正など)の有無によ り一定とはならない^{19,20)}。よって、まずは後処 理フィルタ(ガウシアンフィルタなど)の値を確 認し,subset や iteration 回数については 2008 年 ワーキンググループ報告⁸⁾を参照されたい.FBP 法と同様に、その設定は診断医と協議しながら決 める必要がある。

付録

表 4 合施設の収集および画像再構成条件														
データ	装置名	検出 器数	コリ : メータ	収集 範囲	収集マト リクス	収集 方向 数	収集 時間 (sec/step)	サンプリ ング角度 (度)	ピクセ ルサイ ズ(mm)	再構 成 方法	再構 成フィ ルタ	処理 フィルタ	Cut off 周波数 (cycles/cm)	Order
А	PRISM-IRIX (SHIMADZU)	3	LEHR	360	64×64	60	20	6.0	6.3	FBP	Ramp	Butterworth	0.38	8
В	E. CAM (Canon)	2	LMEGP	360	64×64	72	25	5.0	5.4	FBP	Ramp	Butterworth	0.50	8
С	Symbia E (Canon)	2	LMEGP	360	128× 128	60	40	6.0	4.8	FBP	Ramp	Butterworth	0.42	8
D	PRISM-IRIX (SHIMADZU)	3	LEGP	360	64×64	72	30	5.0	7.1	FBP	Ramp	Butterworth	0.37	8
Е	$\begin{array}{c} \text{Millennium VG} \\ \text{(GE)} \end{array}$	2	LEHR	180	64×64	30	60	6.0	6.7	FBP	Ramp	Butterworth	0.45	10
F	E. CAM (SHIEMENS)	2	LEHR	360	64×64	60	30	6.0	6.6	FBP	Ramp	Butterworth	0.42	10
G	Symbia E (SHIEMENS)	2	LEHR	360	64×64	72	25	5.0	6.6	FBP	Ramp	Butterworth	0.60	8
Н	INFINIA (GE)	2	LEHR	180	64×64	36	45	5.0	5.9	FBP	Ramp	Butterworth	0.40	10
Ι	E. CAM (Canon)	2	LEHR	360	64×64	60	40	6.0	6.6	FBP	Ramp	Butterworth	0.42	8
J	E. CAM (Canon)	2	LEHR	180	64×64	32	40	5.6	5.4	FBP	Ramp	Butterworth	0.42	8
Κ	PRISM-IRIX (SHIMADZU)	3	LEGP	360	64×64	60	30	6.0	6.3	FBP	Ramp	Butterworth	0.40	8
L	INFINIA (GE)	2	LEHR	180	64×64	30	40	6.0	6.8	FBP	Ramp	Butterworth	0.45	10
М	Millennium VG (GE)	2	LEHR	180	64×64	36	30	5.0	6.7	FBP	Ramp	Butterworth	0.52	5
Ν	Millennium VG (GE)	2	LEHR	180	64×64	30	50	6.0	5.3	FBP	Ramp	Butterworth	0.54	10
0	E. CAM (Canon)	2	LEHR	180	64×64	60	30	3.0	7.8	FBP	Ramp	Butterworth	0.45	8
Р	E. CAM (Canon)	2	LEHR	360	64×64	60	40	6.0	6.6	FBP	Ramp	Butterworth	0.42	8
Q	INFINIA (GE)	2	LEHR	180	64×64	30	40	6.0	6.8	FBP	Ramp	Butterworth	0.45	5

表4 各施設の収集および画像再構成条件

LEHR: low energy high resolution, LMEGP: low-medium energy general purpose, LEGP: low energy general purpose, FBP: filtered back projection

心筋血流 SPECT 撮像の標準化に関するガイドライン 1.0 (青木,他)

三	視覚	評価	物理評価							
7 - 9	均一性評価	欠損部評価	微分均一性	% カウント						
A	5	4	1.69	47.98						
В	4	5	2.52	40.67						
\mathbf{C}	4	4	2.26	55.77						
D	4	4	3.47	59.55						
Е	4	4	2.24	55.42						
F	4	4	2.75	56.72						
G	4	4	2.44	52.71						
Н	4	4	3.72	60.61						
Ι	4	3	2.17	62.09						
J	4	3	2.44	70.30						
K	4	3	2.25	60.85						
L	3	4	2.80	60.00						
Μ	3	4	3.08	65.31						
Ν	3	4	3.69	50.05						
Ο	3	4	2.69	65.63						
Р	3	3	1.55	63.56						
Q	3	3	2.39	69.91						

表5 各施設の視覚および物理評価結果

心臓領域標準化に関するガイドライン1.0 評価手順

1. EMITファントムの作成

※確認した項目は□に✔を記入

□ 封入する放射能量は適切か(表1参照)
□ 欠損の広さが下壁側になるように設置されたか(図5参照)

2. 撮像

□ ファントムを配置する向きは頭側に空気だめが向いているか(図 6 参照)
 □ 寝台に対し水平に配置されているか

3. 画像再構成

□ 通常している臨床条件で行われたか

□ 再構成範囲に空気だめが含まれているか (図 7 参照)

□ 空気だめが側壁側となっているか(スライスNoは問わない)

4. 視覚評価

□ 通常の読影環境で評価されたか

□ 欠損の広さ10mmが最も描出されているスライスを表示しているか

付録1 検証用チェックシート

謝辞

本ガイドラインを発刊するにあたりご尽力を賜 わりました,EMITファントムを開発された関係 者ならびに片渕哲朗先生(岐阜医療科学大学)に 感謝申し上げます.また,特許権者である富士フ イルム RIファーマ株式会社様(現富士フイルム 富山化学株式会社様)に謝意を表します.今回の ガイドライン作成に関し始めから指導をしていた だいた日本核医学技術学会 SPECT標準化委員会 (2014年度から2018年度)委員長の藤埜浩一先生 (大阪大学医学部附属病院),構想委員の菊池明泰 先生(北海道科学大学),嶋田博孝先生(群馬大 学医学部附属病院),成田 篤先生(日本メジフィ ジックス株式会社),森 一晃先生(虎の門病院) に深謝致します.最後に,画像提供をしていただ きました各施設の方々に厚く御礼申し上げます.

参考文献

- Nakajima K, Kusuoka H, Nishimura S, et al: Normal limits of ejection fraction and volumes determined by gated SPECT in clinically normal patients without cardiac events: a study based on the J-ACCESS database. Eur J Nucl Med Mol Imaging, **34**: 1088– 1096, 2007
- Sharir T: Role of regional myocardial dysfunction by gated myocardial perfusion SPECT in the prognostic evaluation of patients with coronary artery disease. J Nucl Cardiol, 12: 5–8, 2005
- Slomka PJ, Nishina H, Berman DS, et al: Automated quantification of myocardial perfusion SPECT using simplified limits. J Nucl Cardiol, 12: 66–77, 2005
- Matsumoto N, Sato Y, Suzuki Y, et al: Incremental prognostic value of cardiac function of future acute coronary syndrome. Circ J, 72: 2035–2039, 2008
- 5) Petix NR, Sestini S, Coppola A, et al:Prognostic value of combined perfusion and function by stress technetium-99m sestamibi gated SPECT myocardial perfusion imaging in patients with suspected or known coronary artery disease. Am J Cardiol, 95(11): 1351–1357, 2005
- 6) 心臓核医学検査ガイドライン (2010年改訂版). Guidelines for Clinical Use of Cardiac Nuclear Medicine (JCS2010) http://www.j-circ.or.jp/ guideline/pdf/JCS2010tamaki.h.pdf
- 7) 仁井田秀治,大屋信義,片渕哲朗,他:核医学診療の実態と画像の収集・処理・表示・出力の標

準化に関するアンケート調査報告. 核医学技術, 24:95-118, 2004

- 8) 増田安彦,川渕安寿,片渕哲朗,他:臨床に役立 つ基準画像の収集・処理・表示・出力のポイン
 ト.核医学技術,28(1):13-66,2008
- 9) 堀田大雄:地方会レベルで標準化に取り組んでき た内容. 核医学技術, **35**:87-90, 2015
- Joris DD, Pieter LJ, Jan PO, et al: Minimizing patientspecific tracer dose in myocardial perfusion imaging using CZT SPECT. J Nucl Med Technol, 43: 36–40, 2015
- Armstrong IS, Arumugam P, Lames JM, et al: Reduced-count myocardial perfusion SPECT with resolution recovery. J Nucl Med Commun, 33(2): 121-129, 2012
- 12) Matsutomo N, Nagaki A, Sasaki M: Performance of myocardial perfusion imaging using multifocus fan beam collimator with resolution recovery reconstruction in a comparison with conventional SPECT. Asia Oceania J Nucl Med Biol, 2(2): 111-119, 2014
- 13) Shibutani T, Onoguchi M, Katafuchi T, et al: Development of a myocardial phantom and analysis system toward the standardization of myocardial SPECT image across institutions. Ann Nucl Med, **30**(10): 699–707, 2016
- 14)西村恒彦,汲田伸一郎,玉木長良,他:BRAND NEW 心臓核医学一機能画像が病態を捉える第 1版.金原出版株式会社,2012
- 15)西村重敬,小林秀樹:心臓核医学 コンプリート マニュアル 第1版.株式会社メジカルビュー 社,2004
- 16) 尾川浩一: SPECT における画質劣化とその補正
 Ⅳ γ線の統計変動. 映像情報 Medical, 34 (12):
 1136-1140, 2002
- 17) 大西英雄, 牛尾哲敏, 松尾 悟, 他:^{99m}Tc 心筋 血流 SPECT 画像における Butterworth filter の評価. 日本放射線技術学会雑誌, **52**(3):346-350, 1996
- 18)市川 肇,小野口昌久,對間博之,他:放射線医 療技術学叢(37)初学者のための核医学実験入 門.42-55,公益社団法人日本放射線技術学会出 版委員会,2016
- 19) 松友紀和,古谷洋晃,山尾太一郎,他:SPECT デー タ評価用ディジタルファントムを用いた異なる処理 装置間の OS-EM 再構成アルゴリズムの比較.日本 放射線技術学会雑誌,64(11):1361-1368,2008
- 20)前田幸人,長木昭男,古味省宏,他:ボディ ファントムを用いた SPECT 位置分解能補正組込 OSEM 再構成法についての基礎的検討.日本放 射線技術学会雑誌,**71**(11):1070-1079, 2015