The effect of preparatory conditions of high temperature- and pressure-treated garlic on 5-hydroxymethyl-2-furfural and S-allylcysteine formation

Takeshi Chihara, Kan Shimpo, Takaaki Kaneko, Akiko Tomatsu, Hidehiko Beppu, Takashi Higashiguchi and Shigeru Sonoda

Summary We have previously reported that the feeding of high temperature- and pressure-treated garlic (HTPG) reduced preneoplastic lesions at initiation and post-initiation-stage of chemical induced rat colorectal tumor significantly. The HTPG was prepared by using an autoclave (130°C, 150 min). We confirmed that HTPG contained 5-hydroxymethyl-2-furfural (5-HMF) which was metabolized to genotoxic and mutagenic 5-sulfoxymethylfurfural (SMF). On the other hand, HTPG also contains S-allylcysteine (SAC), which has been demonstrated to have chemopreventive effects on a colon cancer model in mice. Therefore, we attempted to prepare HTPG in new condition and examined the production of 5-HMF and SAC. As a result, we showed that the condition for autoclaving at 130°C for 60 min may be better than the previous condition.

Key words: High temperature- and pressure-treated garlic (HTPG), 5-hydroxymethyl-2-furfural (5-HMF), S-allylcysteine (SAC), 1,1-diphenyl-2-picrylhydrazyl (DPPH)

1. Introduction

Recently, Kwon et al. reported that the antioxidant activity and total both polyphenol and flavonoid contents of garlic juice were increased by high temperature- and pressure-treatment (130°C, 120 min). We tried to make high temperature- and pressure-treated garlic (HTPG) using an autoclave (130°C, 150 min) rapidly and easily. Our attempt showed that antioxidant activity and total polyphenol content were increased, as well as S-allylcysteine (SAC), which was a water-soluble organosulfur compound with preventive effects on colon cancer induced by 1,2-dimethylhydrazine (DMH) in mice. We have previously reported that the feeding of HTPG reduced preneoplastic lesions at initiation and post-initiation-stage of chemical induced rat colorectal tumor significantly.

Kwon et al. reported that the HTPG contained 5-hydroxymethyl-2-furfural (5-HMF) which would be metabolized to genotoxic and mutagenic 5-sulfoxymethylfurfural (SMF). We also confirmed

1Fujita Memorial Nanakuri Institute, Fujita Health University, 1865 Hisai-isshiki-cho, Tsu, Mie 514-1296, Japan
2Department of Surgery & Palliative medicine, Fujita Health University School of Medicine, 424-1 Ohtori-cho, Tsu, Mie 514-1295, Japan

*To whom correspondence should be addressed.

Received for Publication September 28, 2012
Accepted for Publication December 30, 2012

that our HTPG contained 5-HMF by HPLC analysis (Chihara et al., unpublished data). 5-HMF is one of the major intermediate in a so called non-enzymatic Maillard reaction, which occurs during the heating of sugars and amino acids.

The U.S. Food and Drug Administration (FDA) approved the use of 5-HMF for the treatment of sickle cell disease in 2006. However, the 5-HMF was reported as a carcinogenic substance. The U.S National Toxicology Program (NTP) showed that high-dose (188 mg/kg and 375 mg/kg) oral administration of 5-HMF increased the incidence of hepatocellular adenomas in only female mice by 2-year gavage studies using mice and rats. But it is suggested that 5-HMF is generally non-carcinogenic at low doses. The average daily intake of 5-HMF in humans was reported to be in the range of 30-150 mg. Surh and Tannenbaum reported that 5-sulfoisoxymethylfurfural (SMF) was metabolically formed from 5-HMF by sulfotransferase in rodent liver cytosols and exhibited genotoxicity and mutagenicity. However, the studies of 5-HMF metabolism in rodents and humans showed that the SMF was not detected in the subjects. In 2009, Monien et al. detected SMF in the plasma of mice after intravenous 5-HMF administration. Therefore, we reexamined preparative conditions of HTPG by analyzing the concentration of 5-HMF, SAC, and assaying radical-scavenging activity by 1,1-diphenyl-2-picrylhydrazyl (DPPH).

2. Materials and Methods

1. Preparation of HTPG samples

Garlic flakes (Amari Spice Foods Co., Ltd., Kyoto, Japan) were pulverized using an Oster Commercial Blender (Osaka Chemical Co., Ltd., Osaka, Japan). Then 100 g of the pulverized garlic was mixed with 250 ml of boiling Milli-Q water to inactivate alliinase. After that, the mixture was heated and the pressure loaded to it by using an autoclave (Tommy SX-500, Tomy Seiko Co., Ltd., Tokyo, Japan) with different temperature and time. The temperature was examined at 110, 120, and 130°C, and the time in the autoclave ranged from 30 to 180 minutes, with 30-minute intervals at each temperature. After the autoclave treatment, the mixture was freeze-dried and pulverized using an Oster Power Blender (Osterizer, Osaka Chemical Co., Ltd., Osaka, Japan). Prepared powder was used the experiment as HTPG sample.

2. Analysis of 5-HMF concentration in HTPG samples

0.100 g of the prepared HTPG sample was suspended with 5 ml of Milli-Q water, and vortexed vigorously for 1 min. This mixture was centrifuged for 10 min at 17,400 × g. The 5-HMF concentration of the supernatant was analyzed according to the modified method of Makawi et al. The analysis was carried out using a high-performance liquid chromatography (HPLC) system equipped with a Model PU-980 intelligent HPLC pump (Jasco Co., Tokyo, Japan), a Model UV-970 intelligent UV/VIS detector (Jasco Co., Tokyo, Japan) at 275 nm, and an integrator (Chromatocorder 21, System Instruments Co., Ltd., Tokyo, Japan). An analytical column, TSKgel ODS-100V, 250 × 4.6 mm (Tosoh Co., Tokyo, Japan), with the same type of guard column was employed. 5-HMF was eluted with 5% acetic acid/methanol (9:1, v/v) at a flow rate of 0.8 ml/min. The standard sample of 5-HMF for HPLC analysis was purchased from Sigma-Aldrich (St. Louis, MO, USA).

3. Analysis of SAC concentration in HTPG samples

0.500 g of the prepared HTPG sample was suspended with 5 ml of 5% trichloroacetic acid and shaken for 10 min. This mixture was centrifuged for 10 min at 2,000 × g and the supernatant was transferred to a 25 ml measuring flask. We repeated this procedure three times and the volume of the supernatant was adjusted to 25.0 ml by adding 5% trichloroacetic acid. After that, the mixture was filtrated by a 0.22 μm Omnipore membrane filter, and the SAC concentration was analyzed by the modified method of Imai et al. which used HPLC with O-phthalaldehyde postcolumn derivatization. Briefly, the HPLC system was run at 40°C and equipped with a TSKgel Aminopak, 120 × 4.6 mm (Tosoh Co., Tokyo, Japan). The mobile phase of 50 mM sodium citrate buffer (pH 4.0) was pumped at 0.6 ml/min. The eluted SAC was transformed with 6 mM
O-phthalaldehyde reagent running by another pump at a flow rate of 0.4 ml/min and detected with a fluorescence detector at excitation and emission wavelengths of 340 and 455 nm, respectively. The standard sample of SAC for HPLC analysis was purchased from Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan).

4. Assay of DPPH radical-scavenging activity

0.010 g of the prepared HTPG sample was mixed with 1 ml of Milli-Q water and shaken for 30 min. The mixture was centrifuged for 10 min at 17,400 × g and the supernatant used for the assay. DPPH radical-scavenging activity was measured by HPLC using the method of Yamaguchi et al. Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) was used to make the standard curve. Thus the activity was calibrated as mM Trolox/g powder · min).

3. Results

1. Changes of 5-HMF concentration

5-HMF was not detected by autoclaving at 110°C and 120°C for 150 min. However, the concentration of 5-HMF was increased time dependently by autoclaving at 130°C. 5-HMF concentration at 130°C were 0.01 mg for 30-min and 2.09 mg/g for 150-min. Thus its concentration for 150-min was about 210-fold higher than that for 30-min (Fig. 1).

2. Changes of SAC concentration

The concentration of SAC by autoclaving at 110°C was 1.76 and 3.48 mg/g powder for 30 and 150-min, respectively. The latter was about twice as much as that after 30- min. The concentration of SAC by autoclaving at 120°C was 2.69 and 4.55 mg/g powder for 30 and 150-min, respectively. The concentration of SAC at 150-min treatment was about 1.7 times greater than that at 30-min. On the other hand, the SAC concentration by autoclaving at 130°C was 3.73 and 4.59 mg/g powder for 30 and 60-min, respectively. The increasing of SAC was only observed until 60 min, the concentration of SAC decreased to 4.57 and 2.45 mg/g powder for 90 and 150-min, respectively (Fig. 2).

3. DPPH radical-scavenging activity

DPPH radical-scavenging activity by autoclaving was increased depending on both treatment time and

![Graph](image-url)
Fig. 1 The effects of time on change of 5-HMF concentration. 5-HMF concentration was almost completely absent by autoclaving at 110°C and 120°C. However, concentrations by autoclaving at 130°C increased depending on the treatment time. Error bars represent standard errors from the mean.
temperature as previously reported\(^\circ\). The activity at 110°C for 150-min was 0.73 mM Trolox/g powder \(\cdot\) min, but those at 120°C and 130°C were 1.65 and 7.45 mM Trolox/g powder \(\cdot\) min, respectively (Fig. 3).

4. Discussion

We have previously reported that HTPG made

![Graph showing concentration vs. treatment time](image1)

Fig. 2 The effects of time on change of SAC concentration. SAC concentrations were increased by autoclaving at 110°C and 120°C depending on the treatment time. However, concentrations by autoclaving at 130°C reached the maximum at 60 min. Error bars represent standard errors from the mean.

![Graph showing trolox equivalent vs. treatment time](image2)

Fig. 3 The effects of time on change of DPPH radical scavenging activity. DPPH radical scavenging activity by autoclaving at 110°C and 120°C was not markedly increased. However, its activity by autoclaving at 130°C increased depending on the treatment time. Error bars represent standard errors from the mean.
with an autoclave (130°C, 150 min) reduced DMH-induced preneoplastic lesions in the rat colorectum. In those experiments, we analyzed and discussed only SAC concentrations and DPPH radical-scavenging activity. In the present study, we analyzed 5-HMF which would be metabolized to genotoxic and mutagenic 5-sulfoxymethylfurural (SMF) and confirmed that the concentration of 5-HMF increased depending on the treating time under the current conditions. We have calculated the daily intake of 5-HMF in rats to 5.79 mg/kg body weight in our previous experiment. Two-year gavage study using mice in the NTP (National Toxicology Program), 5-HMF increased the incidence of hepatocellular adenomas. Daily intakes in the NTP study were carried out with 188 and 375 mg/kg body weight, which was 32 to 64 times greater than the amount of our experiment, respectively. Therefore, daily intake in our previous experiment was able to consider no influence on hepatocellular adenomas, since the daily dosage of 5-HMF in the NTP study was too high. It has become clear that the administration of 5-HMF gave beneficial effects like what antioxidant effects and reducing the risk of life style-related diseases. 5-HMF can protect human hepatocytes against cytotoxicity induced by hydrogen peroxide. Additionally, 5-HMF suppressed tumor necrosis factor-α (TNF-α)-stimulated vascular cell adhesion molecule-1 (VCAM-1) expression and adhesion of monocytes to the endothelium in human umbilical vein endothelial cells (HUVECs) by inhibiting the activation of redox-sensitive transcription factor NF-κB and reducing the rate of reactive oxygen species formation.

It has been reported that SMF is metabolically formed from 5-HMF by hepatic sulfotransferase and exhibits genotoxicity and mutagenicity. However, SMF was not detected in humans and rodents. On the other hand, Monien et al. reported that SMF was detected in the plasma of 5-HMF-treated mice. It means that considerable quantity of SMF may be formed by the ingestion of foods contained 5-HMF in humans, and reducing the concentration of 5-HMF in HTPG is very important as a health supplement.

SAC concentrations after autoclaving at 130°C reached the maximum at 60 min and the minimum at 150 min. Yamazaki and Okuno have reported that the warming of garlic bulbs at 55°C for 2 weeks resulted in an accumulation of SAC. The concentration reported by their study was nearly equal to that after 60

![Graph](image_url)

Fig. 4 The effects of time on change of 5-HMF and SAC concentrations by autoclaving at 130°C. Concentrations of 5-HMF did not increase and those of SAC reached the maximum at 60 min.
min at 130°C in our study. It is known that SAC is transformed from γ-glutamyl-S-allylcysteine (GSAC) by the hydrolysis of γ-glutamylpeptidase during aging in water or dilute ethanol. However, it was unclear whether SAC accumulated in the treatment conditions. SAC has been reported to have not only antioxidative activities, but also inhibits the growth of DMH-induced colon cancer in mice as well as the growth of both cultured human neuroblastoma cells and breast carcinoma cells. Considering the SAC concentrations determined in our study at 130°C treatment, 150-min is too long to reach higher concentrations. It may be caused by the progression of the Maillard reaction.

DPPH radical-scavenging activity by autoclaving at 130°C increased time dependently, and reached the maximum at 150 min. However, DPPH radical-scavenging activity by autoclaving at 110°C and 120°C was not markedly increased. In 2007, Hwang et al. identified the antioxidant substance in heated garlic juice (130°C, 120 min) as thiacremone (2,4-dihydroxy-2,5-dimethyl-thiophene-3-one). Additionally, Ban et al. also reported that thiacremone inhibited colon cancer cell growth, inducing apoptotic cell death by modulating nuclear transcription factor-k. Thiacremone may not be increased by autoclaving at 110°C and 120°C and unfortunately, we could not confirm whether HTPG contained this antioxidative substance or not.

In conclusion, the current condition (130°C, 150 min) of HTPG preparation showed that the concentration of 5-HMF increased and that of SAC decreased, although the DPPH radical scavenging activity was enhanced. In our newly presented condition (130°C, 60 min), the concentration of SAC increased (Fig. 4) and DPPH radical scavenging activity slightly enhanced and that the concentration of 5-HMF did not changed. These results suggest that HTPG prepared using the new condition will be more useful as a health supplement than those of previous conditions. However, 5-HMF might be useful for health within an acceptable daily intake. Therefore, we want to examine the inhibitory effects of HTPG prepared in our new condition on neoplastic lesions in the rat colorectum. This experiment is now underway in our laboratory.

Acknowledgements
This study was supported in part by JSPS KAKENHI Grant Number 24501008.

Disclosures
Conflict of interest and financial disclosure: none.

References
9) Zhang XM, Chan CC, Stamp D, Minkin S, Archer MC, Bruce, WR: Initiation and promotion of colonic aberrant crypt foci in rats by 5-hydroxymethyl-2-

